Câu hỏi:
12/07/2024 1,502
Chứng minh các biểu thức sau dương:
a) x2 – 8x + 20.
b) 4x2 – 12x + 11.
c) x2 – x + 1.
d) x2 – 2x + y2 + 4y + 6.
Chứng minh các biểu thức sau dương:
a) x2 – 8x + 20.
b) 4x2 – 12x + 11.
c) x2 – x + 1.
d) x2 – 2x + y2 + 4y + 6.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) x2 – 8x + 20 = (x2 – 8x + 16) + 4 = (x + 4)2 + 4
Vì (x + 4)2 ≥ 0 với mọi x
Nên (x + 4)2 + 4 > 0 với mọi x
Vậy biểu thức x2 – 8x + 20 dương.
b) 4x2 – 12x + 11 = (4x2 – 12x + 9) + 2 = (2x – 3)2 + 2
Vì (2x – 3)2 ≥ 0 với mọi x
Nên (2x – 3)2 + 2 > 0 với mọi x
Vậy biểu thức 4x2 – 12x + 11 dương.
c) \[{{\rm{x}}^2} - x + 1 = {x^2} - 2.x.\frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4}\]
Vì \({\left( {x - \frac{1}{2}} \right)^2} \ge 0\) với mọi x
Nên \({\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\) với mọi x
Vậy biểu thức x2 – x + 1 dương.
d) x2 – 2x + y2 + 4y + 6
= (x2 – 2x + 1) + (y2 + 4y + 4) + 1
= (x – 1)2 + (y + 2)2 + 1
Vì (x – 1)2 ≥ 0 với mọi x
(y + 2)2 ≥ 0 với mọi y
Nên (x – 1)2 + (y + 2)2 + 1 > 0 với mọi x, y
Vậy biểu thức x2 – 2x + y2 + 4y + 6 dương.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích một mặt của hình lập phương là:
54 : 6 = 9 (cm2)
Vì 9 = 3 × 3 nên cạnh hình lập phương là 3 cm
Thể tích của hình lập phương là :
3 × 3 × 3 = 27 (cm3)
Vậy thể tích hình lập phương đó là 27 cm3.
Lời giải
Gọi số phần thưởng có thể chia được là x (phần thưởng) (x ∈ ℕ*)
Vì chia 128 quyển vở, 48 bút chì, 192 tập giấy thành 1 số phần thưởng như nhau
Nên x là ƯC(128, 48, 192)
Nhưng để x là nhiều nhất thì x = ƯCLN(128, 48, 192)
Ta có: 128 = 27; 48 = 24.3; 192 = 26.3
Suy ra ƯCLN(128, 48, 192) = 24 = 16
Do đó x = 16
Vậy chia được là 16 phần thưởng
Khi đó, mỗi phần thưởng có 128 : 16 = 8 (quyển vở); 48 : 16 = 3 (bút chì) và 192 : 16 = 12 (tập giấy).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.