Câu hỏi:
11/07/2024 489Cho hai đường thẳng: y = x + 3 (d1); y = 3x + 7 (d2).
a) Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Oy. Tìm tọa độ trung điểm I của đoạn thẳng AB.
b) Gọi J là giao điểm của (d1) và (d2) . Tam giác OIJ là tam giác gì? Tính diện tích của tam giác đó.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Vì A là giao điểm của (d1) và Oy nên \(\left\{ \begin{array}{l}{x_A} = 0\\{y_A} = 0 + 3 = 3\end{array} \right.\)
Suy ra A(0; 3).
Vì B là giao điểm của (d2) và Oy nên \(\left\{ \begin{array}{l}{x_B} = 0\\{y_B} = 3.0 + 7 = 7\end{array} \right.\)
Suy ra B(0; 7).
Vì I là trung điểm của AB nên tọa độ của I là
\(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_B} = \frac{{{y_A} + {y_B}}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \frac{{0 + 0}}{2} = 0\\{y_B} = \frac{{3 + 7}}{2} = 5\end{array} \right.\)
Vậy I(0; 5).
b) Ta có I(0; 5) suy ra OI = 5.
Hoành độ giao điểm của (d1) và (d2) là nghiệm của phương trình:
x + 3 = 3x + 7
⇔ x – 3x = 7 – 3
⇔ – 2x = 4
⇔ x = – 2
Suy ra y = – 2 + 3 = 1
Do đó J(– 2; 1), suy ra \[OJ = \sqrt {{{\left( { - 2} \right)}^2} + {1^2}} = \sqrt 5 \].
Gọi H là hình chiếu của J lên Oy. Do đó H(0; 1).
Suy ra OH = 1 và JH = 2.
Do đó IH = OI – OH = 5 – 1 = 4.
Khi đó, theo định lí Pythagore ta có: IJ2 = IH2 + JH2
\[ \Rightarrow IJ = \sqrt {I{H^2} + J{H^2}} = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \]
Suy ra OI2 = OJ2 + JI2
Do đó tam giác OIJ vuông tại J (định lý Pytago đảo)
Ta có \[{{\rm{S}}_{{\rm{OIJ}}}} = \frac{1}{2}JI.J{\rm{O}} = \frac{1}{2}.2\sqrt 5 .\sqrt 5 = 5\]
Vậy tam giác OIJ vuông tại J có diện tích bằng 5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích một mặt của hình lập phương là:
54 : 6 = 9 (cm2)
Vì 9 = 3 × 3 nên cạnh hình lập phương là 3 cm
Thể tích của hình lập phương là :
3 × 3 × 3 = 27 (cm3)
Vậy thể tích hình lập phương đó là 27 cm3.
Lời giải
Gọi số phần thưởng có thể chia được là x (phần thưởng) (x ∈ ℕ*)
Vì chia 128 quyển vở, 48 bút chì, 192 tập giấy thành 1 số phần thưởng như nhau
Nên x là ƯC(128, 48, 192)
Nhưng để x là nhiều nhất thì x = ƯCLN(128, 48, 192)
Ta có: 128 = 27; 48 = 24.3; 192 = 26.3
Suy ra ƯCLN(128, 48, 192) = 24 = 16
Do đó x = 16
Vậy chia được là 16 phần thưởng
Khi đó, mỗi phần thưởng có 128 : 16 = 8 (quyển vở); 48 : 16 = 3 (bút chì) và 192 : 16 = 12 (tập giấy).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận