Câu hỏi:
11/07/2024 400Cho hai đường thẳng: y = x + 3 (d1); y = 3x + 7 (d2).
a) Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Oy. Tìm tọa độ trung điểm I của đoạn thẳng AB.
b) Gọi J là giao điểm của (d1) và (d2) . Tam giác OIJ là tam giác gì? Tính diện tích của tam giác đó.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì A là giao điểm của (d1) và Oy nên \(\left\{ \begin{array}{l}{x_A} = 0\\{y_A} = 0 + 3 = 3\end{array} \right.\)
Suy ra A(0; 3).
Vì B là giao điểm của (d2) và Oy nên \(\left\{ \begin{array}{l}{x_B} = 0\\{y_B} = 3.0 + 7 = 7\end{array} \right.\)
Suy ra B(0; 7).
Vì I là trung điểm của AB nên tọa độ của I là
\(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_B} = \frac{{{y_A} + {y_B}}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = \frac{{0 + 0}}{2} = 0\\{y_B} = \frac{{3 + 7}}{2} = 5\end{array} \right.\)
Vậy I(0; 5).
b) Ta có I(0; 5) suy ra OI = 5.
Hoành độ giao điểm của (d1) và (d2) là nghiệm của phương trình:
x + 3 = 3x + 7
⇔ x – 3x = 7 – 3
⇔ – 2x = 4
⇔ x = – 2
Suy ra y = – 2 + 3 = 1
Do đó J(– 2; 1), suy ra \[OJ = \sqrt {{{\left( { - 2} \right)}^2} + {1^2}} = \sqrt 5 \].
Gọi H là hình chiếu của J lên Oy. Do đó H(0; 1).
Suy ra OH = 1 và JH = 2.
Do đó IH = OI – OH = 5 – 1 = 4.
Khi đó, theo định lí Pythagore ta có: IJ2 = IH2 + JH2
\[ \Rightarrow IJ = \sqrt {I{H^2} + J{H^2}} = \sqrt {{4^2} + {2^2}} = 2\sqrt 5 \]
Suy ra OI2 = OJ2 + JI2
Do đó tam giác OIJ vuông tại J (định lý Pytago đảo)
Ta có \[{{\rm{S}}_{{\rm{OIJ}}}} = \frac{1}{2}JI.J{\rm{O}} = \frac{1}{2}.2\sqrt 5 .\sqrt 5 = 5\]
Vậy tam giác OIJ vuông tại J có diện tích bằng 5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho các số x, y thõa mãn đẳng thức 3x2 + 3y2 + 4xy + 2x – 2y + 2 = 0.
Tính M = (x + y)2010 + (x + 2)2011 + (y – 1)2012.
Câu 3:
Tìm x:
a) 4x(3x – 7) – 6(2x2 – 5x + 1) = 12
b) (5x + 3)(4x – 1) + (10x – 7)(–2x + 3) = 27
c) (8x – 5)(3x + 2) – (12x + 7)(2x – 1) = 17
d) (5x + 9)(6x – 1) – (2x – 3)(15x + 1) = – 190.
Câu 4:
Hình lập phương có diện tích toàn phần là 54 cm2 . Tính thể tích hình đó.
Câu 5:
Trung bình cộng của hai số là 12,35. Tìm hai số đó biết rằng hiệu của chúng bằng 3,3.
Câu 6:
Số học sinh khối 6 của một trường khoảng từ 400 đến 500 em. Mỗi lần xếp hàng 6 hoặc hàng 9 đều dư 2 em nhưng khi xếp hàng 5 thì vừa đủ. Tính số học sinh khối 6 của trường đó.
Câu 7:
Có 4 bạn Hoa, Mai, Lan, Phượng. Các bạn Hoa, Mai, Lan cân nặng tất cả là 108,6 kg. Các bạn Mai, Lan, Phượng cân nặng hết tất cả 105,4 kg. Các bạn Hoa, Mai, Phượng cân nặng tất cả là 110,3 kg. Các bạn Hoa, Lan, Phượng cân nặng tất cả là 107,7 kg. Hỏi mỗi bạn nặng bao nhiêu kg?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!