Câu hỏi:

12/07/2024 1,188

Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là 1 điểm thuộc tia Ax. Đường vuông góc với OC cắt By tại D. Chứng minh rằng CD = AC + BD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đoạn thẳng AB, O là trung điểm AB. Trên cùng 1 nửa mặt phẳng bờ AB, vẽ các tia Ax (ảnh 1)

Gọi K là giao điểm của CO cà BD

Vì O là trung điểm của AB nên OA = OB

Vì Ax AB nên \(\widehat {CAO} = 90^\circ \)

Vì By AB nên \(\widehat {KBO} = 90^\circ \)

Xét AOC và BOK có

\(\widehat {CAO} = \widehat {KBO}\left( { = 90^\circ } \right)\)

OA = OB (chứng minh trên)

\(\widehat {COA} = \widehat {BOK}\) (hai góc đối đỉnh)

Do đó AOC = BOK (g.c.g)

Suy ra OC = OK, AC = BK (các cặp cạnh tương ứng)

Xét DOC và DOK có

OC = OK (chứng minh trên)

\(\widehat {COD} = \widehat {DOK}\left( { = 90^\circ } \right)\)

OD là cạnh chung

Do đó DOC = DOK (c.g.c)

Suy ra CD = DK (hai cạnh tương ứng)

Ta có CD = DK = BD + BK = BD + AC

Vậy CD = AC + BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích một mặt của hình lập phương là:

54 : 6 = 9 (cm2)

Vì 9 = 3 × 3 nên cạnh hình lập phương là 3 cm

Thể tích của hình lập phương là :

3 × 3 × 3 = 27 (cm3)

Vậy thể tích hình lập phương đó là 27 cm3.

Lời giải

Gọi số phần thưởng có thể chia được là x (phần thưởng) (x ℕ*)

Vì chia 128 quyển vở, 48 bút chì, 192 tập giấy thành 1 số phần thưởng như nhau

Nên x là ƯC(128, 48, 192)

Nhưng để x là nhiều nhất thì x = ƯCLN(128, 48, 192)

Ta có: 128 = 27; 48 = 24.3; 192 = 26.3

Suy ra ƯCLN(128, 48, 192) = 24 = 16

Do đó x = 16

Vậy chia được là 16 phần thưởng

Khi đó, mỗi phần thưởng có 128 : 16 = 8 (quyển vở); 48 : 16 = 3 (bút chì) và 192 : 16 = 12 (tập giấy).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP