Câu hỏi:

12/07/2024 989

Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua A cắt đường tròn tâm O bán kính OI tại P và Q.

a) Chứng minh rằng AP . AQ = AI2.

b) Giả sử đường tròn ngoại tiếp tam giác BPQ cắt AB tại K khác B. Chứng minh
rằng AK . AB = AP . AQ.

c) Chứng minh rằng K là trung điểm của AI.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của (ảnh 1)

a) Xét (O; OA) có I là trung điểm của dây cung AB, suy ra OI AB

Xét (O; OI) có OI AI

Suy ra AI là tiếp tuyến của (O; OI) tại I

Do đó \(\widehat {PIA} = \widehat {PQI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung PI)

Xét DAIP và DAQI có

\(\widehat {PIA} = \widehat {PQI}\) (chứng minh trên);

\(\widehat {PAI}\) là góc chung

Suy ra  (g.g)

Do đó \(\frac{{AI}}{{AQ}} = \frac{{AP}}{{AI}}\), suy ra AP . AQ = AI2

b) Vì BKPQ là tứ giác nội tiếp nên \(\widehat {APK} = \widehat {KBQ}\)

Xét DAPK và DABQ có

\(\widehat {APK} = \widehat {ABQ}\) (chứng minh trên);

\(\widehat {PAK}\) là góc chung

Suy ra  (g.g)

Do đó \(\frac{{AP}}{{AB}} = \frac{{AK}}{{AQ}}\), suy ra AP . AQ = AB . AK.

c) Ta có AP . AQ = AB . AK (chứng minh câu b)

AP . AQ = AI2 (chứng minh câu a)

Suy ra AB . AK = AI2

2AI . AK = AI2 (vì I là trung điểm của AB)

2AK = AI

\( \Rightarrow AK = \frac{1}{2}AI\)

Vậy K là trung điểm của AI.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giáo viên chủ nhiệm muốn chia 128 quyền vở; 48 bút chì và 192 tập giấy thành một số phần thưởng như nhau cho các học sinh giỏi nhân dịp tổng kết năm học. Hỏi có thể chia nhiều nhất là bao nhiêu phần thưởng? Mỗi phần thưởng có bao nhiêu quyển vở, bao nhiêu bút chì và bao nhiêu tập giấy?

Xem đáp án » 12/07/2024 3,745

Câu 2:

Tìm x:

a) 4x(3x – 7) – 6(2x2 – 5x + 1) = 12

b) (5x + 3)(4x – 1) + (10x – 7)(–2x + 3) = 27

c) (8x – 5)(3x + 2) – (12x + 7)(2x – 1) = 17

d) (5x + 9)(6x – 1) – (2x – 3)(15x + 1) = – 190.

Xem đáp án » 12/07/2024 2,237

Câu 3:

Hình lập phương có diện tích toàn phần là 54 cm2 . Tính thể tích hình đó.

Xem đáp án » 12/07/2024 2,113

Câu 4:

Để đánh số trang một quyển sách dùng hết 831 chữ số. Hỏi quyển sách đó có bao nhiêu trang?

Xem đáp án » 12/07/2024 1,781

Câu 5:

Có 4 bạn Hoa, Mai, Lan, Phượng. Các bạn Hoa, Mai, Lan cân nặng tất cả là 108,6 kg. Các bạn Mai, Lan, Phượng cân nặng hết tất cả 105,4 kg. Các bạn Hoa, Mai, Phượng cân nặng tất cả là 110,3 kg. Các bạn Hoa, Lan, Phượng cân nặng tất cả là 107,7 kg. Hỏi mỗi bạn nặng bao nhiêu kg?

Xem đáp án » 12/07/2024 1,742

Câu 6:

Giữa các số 7 và 35 hãy tìm thêm 6 số nữa để được một cấp số cộng.

Xem đáp án » 11/07/2024 1,733

Câu 7:

Trung bình cộng của hai số là 12,35. Tìm hai số đó biết rằng hiệu của chúng bằng 3,3.

Xem đáp án » 12/07/2024 1,709

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store