Câu hỏi:

12/07/2024 2,067

Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q theo thứ tự là trung điểm của AB, AC, CD, BD 

a) Chứng minh rằng MNPQ là hình bình hành

b) Hình thang ABCD phải có thêm điều kiện gì để tứ giác MPNQ là hình thoi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD (AB // CD). Gọi M, N, P, Q theo thứ tự là trung điểm của AB, AC (ảnh 1)

a) Xét tam giác BAD có: M, Q lần lượt là trung điểm của AB, BD

Suy ra MQ là đường trung bình của tam giác BAD

Do đó MQ // AD và \(MQ = \frac{1}{2}A{\rm{D}}\)                           (1)

Xét tam giác CAD có: N, P lần lượt là trung điểm của AC, CD

Suy ra NP là đường trung bình của tam giác CAD

Do đó NP // AD và \(NP = \frac{1}{2}A{\rm{D}}\)                    (2)

Từ (1) và (2) suy ra MQ // NP ; MQ = NP

Xét tứ giác MNPQ có: MQ // NP ; MQ = NP (chứng minh trên)

Suy ra MNPQ là hình bình hành

b) Xét tam giác CAB có: N, M là trung điểm của AC, AB

Suy ra NM là đường trung bình của tam giác CAB

Do đó \(NM = \frac{1}{2}BC\)                    

Để MPNQ là hình thoi MN = MQ

AD = BC (vì \(MQ = \frac{1}{2}A{\rm{D,}}MN = \frac{1}{2}BC\))

Hình thang ABCD là hình thang cân

Vậy hình thang ABCD cân thì MNPQ là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích một mặt của hình lập phương là:

54 : 6 = 9 (cm2)

Vì 9 = 3 × 3 nên cạnh hình lập phương là 3 cm

Thể tích của hình lập phương là :

3 × 3 × 3 = 27 (cm3)

Vậy thể tích hình lập phương đó là 27 cm3.

Lời giải

Gọi số phần thưởng có thể chia được là x (phần thưởng) (x ℕ*)

Vì chia 128 quyển vở, 48 bút chì, 192 tập giấy thành 1 số phần thưởng như nhau

Nên x là ƯC(128, 48, 192)

Nhưng để x là nhiều nhất thì x = ƯCLN(128, 48, 192)

Ta có: 128 = 27; 48 = 24.3; 192 = 26.3

Suy ra ƯCLN(128, 48, 192) = 24 = 16

Do đó x = 16

Vậy chia được là 16 phần thưởng

Khi đó, mỗi phần thưởng có 128 : 16 = 8 (quyển vở); 48 : 16 = 3 (bút chì) và 192 : 16 = 12 (tập giấy).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP