Câu hỏi:
07/06/2023 601Cho (O; R). Từ điểm A nằm ngoài (O; R), vẽ hai tiếp tuyến AM và AN với đường tròn (M và N là các tiếp điểm). Vẽ dây NC của (O; R) vuông góc với MB tại H. Gọi I là giao điểm của AB và NH. Tính tỉ số \(\frac{{NI}}{{NC}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
MA ⊥ MB (tiếp tuyến vuông góc với đường kính)
NC ⊥ OB suy ra: IH ⊥ MB
Do đó: IH // MA
Áp dụng định lí Thalès trong tam giác MAB có:
\(\frac{{HB}}{{MB}} = \frac{{IB}}{{BA}} = \frac{{IH}}{{MA}}\,\,hay\,\,\frac{{HI}}{{MA}} = \frac{{HB}}{{MB}} = \frac{{HB}}{{2MO}}\,\)(1)
Ta có: AMON là tứ giác nội tiếp đường tròn vì \[\widehat {ANO} + \widehat {AMO}\] = 180° suy ra: \[\widehat {MNO} = \widehat {MAO}\]
Mà \[\widehat {ONB}\, + \widehat {MON}\, = \widehat {MAO\,} + \,\widehat {MOA}\,\]= 90°
Suy ra: \[\widehat {ONB}\,\, = \,\,\widehat {MOA}\,\]
Mặt khác tam giác ONB cân tại O nên \[\widehat {ONB}\,\, = \,\,\widehat {HBN}\,\]
Xét tam giác HBN và tam giác MOA có:
\(\widehat {NHB} = \widehat {AMO}\)= 90°
\(\widehat {HBN} = \widehat {ONB} = \widehat {MOA}\)
Suy ra: ∆HBN ᔕ ∆MOA (g.g)
Hay \(\frac{{HN}}{{MA}} = \frac{{HB}}{{MO}} = \frac{{2HB}}{{MB}}\,\,\)(2)
Từ (1) và (2) suy ra: \(\frac{{HN}}{{MA}} = \frac{{2HI}}{{MA}}\,\,\)hay HN = 2HI = 2NI
Mà NC = 2HN
Suy ra: NC = 4NI
Vậy \[\frac{{NI}}{{NC}} = \frac{1}{4}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người dự định đi bộ quãng đường với vận tốc 5km/h nhưng khi đi được nửa đường thì nhờ được bạn đèo xe đạp đi tiếp với vận tốc 12km/h do đó đến sớm hơn dự định 28 phút. Hỏi người ấy đi hết toàn bộ quãng đường trong bao lâu ?
Câu 2:
Một miếng đất hình chữ nhật có chu vi 80m. Nếu chiều rộng tăng thêm 5 m, chiều dài tăng thêm 3m thì diện tích tăng 195 m2. Tính kích thước của mảnh đất?
Câu 4:
Một đội công nhân có 63 người nhận sửa xong một quãng đường trong 11 ngày. Hỏi muốn làm xong quãng đường đó trong 7 ngày thì cần thêm bao nhiêu người nữa ? (Mức làm của mỗi người như nhau).
Câu 5:
Tìm số tự nhiên có hai chữ số biết số đó chia cho tổng các chữ số của nó thu được 7 dư 6.
Câu 6:
Cho tam giác ABC thỏa mãn a4 = b4 + c4. Chứng minh rằng:
2sin2A = tan B.tan CCâu 7:
Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Kẻ DE và CF cùng vuông góc với đường thẳng AB ở E và F.
a) Chứng minh: A là trung điểm của EF.
b) Chứng minh: DF // CE.
về câu hỏi!