Câu hỏi:

08/06/2023 1,690

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = \(\left| {{x^4} - 2m{x^2} + 64x} \right|\)có đúng ba điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số y = x4 – 2mx2 + 64x

y' = 4x3 – 4mx + 64 (*)

Phương trình hoành độ giao điểm:

\(\left[ \begin{array}{l}x = 0\\{x^3} - 2mx + 64 = 0\,\,\,(1)\end{array} \right.\)

Phương trình (1) luôn có một nghiệm x1 = 0 nên đồ thị hàm số y = x4 – 2mx2 + 64x cắt Ox ít nhất tại 2 điểm và \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {{x^4}--{\rm{ }}2m{x^2} + {\rm{ }}64x} \right) = + \infty \)

Suy ra để hàm số y = \(\left| {{x^4} - 2m{x^2} + 64x} \right|\) có 3 điểm cực trị thì phương trình (*) có đúng một nghiệm đơn

m = \({x^2} + \frac{{16}}{x}\)có đúng một nghiệm đơn

Xét hàm số f(x) = \({x^2} + \frac{{16}}{x}\)

f'(x) =\(2x - \frac{{16}}{{{x^2}}}\)

f'(x) =\(2x - \frac{{16}}{{{x^2}}}\)= 0 x = 2

Ta có bảng biến thiên

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = x^4 - 2mx^2 (ảnh 1)

Từ bảng biến thiên suy ra: m ≤ 12

Vì m là số nguyên dương nên m {1;2;3;...;11;12}.

Vậy có 12 giá trị nguyên dương của tham số m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số có 3 chữ số khác nhau là: \(\overline {abc} \)

Để được số chia hết cho 5 thì c = 0 hoặc c = 5

Với c = 0 thì b có 9 cách chọn

a có 8 cách chọn

Vậy có: 8.9.1 = 72 (số)

+ Với c = 5, c có 1 cách chọn

Chữ số a có 8 cách chọn (vì a khác 0)

b có 8 cách chọn

Vậy có: 8.8.1 = 64 (số)

Vậy lập được: 72 + 64 = 136 (số).

Lời giải

Gọi chiều rộng hình chữ nhật là a;

Chiều dài hình chữ nhật là b (a,b>0)

Theo bài ta có phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{\left( {a + b} \right){\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}80}\\{\left( {a + 3} \right)\left( {b + 5} \right){\rm{ }} = {\rm{ }}ab{\rm{ }} + {\rm{ }}195}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5a + 3b + 15\,\,{\rm{ = }}\,\,195}\end{array}} \right.\)

\[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5\left( {a + b} \right) - 2b\,\,{\rm{ = }}\,\,180}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{2b = 20}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{l}}{a = 3{\rm{0}}}\\{b = 10}\end{array}} \right.\]

Vậy chiều dài là 30m và chiều rộng là chiều rộng là 10m.

Kích thước mảnh đất là:

30 . 10 = 300 (m2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP