Câu hỏi:
08/06/2023 60Giải phương trình \(\sqrt {x + 3} + \sqrt {3x + 1} = 2\sqrt x + \sqrt {2x + 2} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện: x ≥ 0.
\(\sqrt {x + 3} + \sqrt {3x + 1} = 2\sqrt x + \sqrt {2x + 2} \)
⇔ \(\sqrt {x + 3} - 2 + \sqrt {3x + 1} - 2 = 2\sqrt x - 2 + \sqrt {2x + 2} - 2\)
⇔ \[\frac{{x + 3 - 4}}{{\sqrt {x + 3} + 2}} + \frac{{3x + 1 - 4}}{{\sqrt {3x + 1} + 2}} = \frac{{4x - 4}}{{2\sqrt x - 2}} + \frac{{2x + 2 - 4}}{{\sqrt {2x + 2} - 2}}\]
⇔ \[\frac{{x - 1}}{{\sqrt {x + 3} + 2}} + \frac{{3\left( {x - 1} \right)}}{{\sqrt {3x + 1} + 2}} = \frac{{4\left( {x - 1} \right)}}{{2\sqrt x - 2}} + \frac{{2\left( {x - 1} \right)}}{{\sqrt {2x + 2} - 2}}\]
⇔ \[\left( {x - 1} \right)\left( {\frac{1}{{\sqrt {x + 3} + 2}} + \frac{3}{{\sqrt {3x + 1} + 2}} - \frac{4}{{2\sqrt x - 2}} - \frac{2}{{\sqrt {2x + 2} - 2}}} \right) = 0\]
Ta thấy: \[\frac{1}{{\sqrt {x + 3} + 2}} + \frac{3}{{\sqrt {3x + 1} + 2}} - \frac{4}{{2\sqrt x - 2}} - \frac{2}{{\sqrt {2x + 2} - 2}}\] > 0
Suy ra: x – 1 = 0 hay x = 1 (t/m).
Vậy x = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người dự định đi bộ quãng đường với vận tốc 5km/h nhưng khi đi được nửa đường thì nhờ được bạn đèo xe đạp đi tiếp với vận tốc 12km/h do đó đến sớm hơn dự định 28 phút. Hỏi người ấy đi hết toàn bộ quãng đường trong bao lâu ?
Câu 2:
Một miếng đất hình chữ nhật có chu vi 80m. Nếu chiều rộng tăng thêm 5 m, chiều dài tăng thêm 3m thì diện tích tăng 195 m2. Tính kích thước của mảnh đất?
Câu 4:
Một đội công nhân có 63 người nhận sửa xong một quãng đường trong 11 ngày. Hỏi muốn làm xong quãng đường đó trong 7 ngày thì cần thêm bao nhiêu người nữa ? (Mức làm của mỗi người như nhau).
Câu 5:
Tìm số tự nhiên có hai chữ số biết số đó chia cho tổng các chữ số của nó thu được 7 dư 6.
Câu 6:
Cho tam giác ABC thỏa mãn a4 = b4 + c4. Chứng minh rằng:
2sin2A = tan B.tan CCâu 7:
Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Kẻ DE và CF cùng vuông góc với đường thẳng AB ở E và F.
a) Chứng minh: A là trung điểm của EF.
b) Chứng minh: DF // CE.
về câu hỏi!