Câu hỏi:
13/07/2024 377Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
Chứng minh rằng: \(\frac{{HA}}{{BC}} + \frac{{HB}}{{AC}} + \frac{{HC}}{{AB}} \ge \sqrt 3 \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[{\left( {\frac{{HA}}{{BC}} + \frac{{HB}}{{AC}} + \frac{{HC}}{{AB}}} \right)^2} \ge 3\sqrt {\frac{{HA}}{{BC}}.\frac{{HB}}{{AC}} + \frac{{HB}}{{AC}}.\frac{{HC}}{{AB}} + \frac{{HC}}{{AB}}.\frac{{HA}}{{BC}}} \](*)
Xét tam giác HAE và tam giác CAD có:
Chung \(\widehat A\)
\(\widehat {CDA} = \widehat {AEH}\)
⇒ ∆HAE ᔕ ∆CAD (g.g)
⇒ \(\frac{{HA}}{{CA}} = \frac{{AE}}{{AD}}\)
⇒\(\frac{{HA.HB}}{{CA.CB}} = \frac{{AE.HB}}{{AD.CB}} = \frac{{{S_{AHB}}}}{{{S_{ABC}}}}\)(1)
Tương tự ta có:
\(\frac{{HB.HC}}{{AB.AC}} = \frac{{{S_{AHC}}}}{{{S_{ABC}}}}\)(2)
\(\frac{{HC.HA}}{{BC.BA}} = \frac{{{S_{BHC}}}}{{{S_{ABC}}}}\)(3)
Cộng (1), (2), (3) theo từng vế ta có:
\(\frac{{HA.HB}}{{CA.CB}} + \frac{{HB.HC}}{{AB.AC}} + \frac{{HC.HA}}{{BC.BA}} = \frac{{{S_{AHB}}}}{{{S_{ABC}}}} + \frac{{{S_{AHC}}}}{{{S_{ABC}}}} + \frac{{{S_{BHC}}}}{{{S_{ABC}}}} = 1\)(**)
Từ (*) và (**) ta có: \[{\left( {\frac{{HA}}{{BC}} + \frac{{HB}}{{AC}} + \frac{{HC}}{{AB}}} \right)^2} \ge 3\sqrt 1 = 3\]
Hay \(\frac{{HA}}{{BC}} + \frac{{HB}}{{AC}} + \frac{{HC}}{{AB}} \ge \sqrt 3 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người dự định đi bộ quãng đường với vận tốc 5km/h nhưng khi đi được nửa đường thì nhờ được bạn đèo xe đạp đi tiếp với vận tốc 12km/h do đó đến sớm hơn dự định 28 phút. Hỏi người ấy đi hết toàn bộ quãng đường trong bao lâu ?
Câu 2:
Một miếng đất hình chữ nhật có chu vi 80m. Nếu chiều rộng tăng thêm 5 m, chiều dài tăng thêm 3m thì diện tích tăng 195 m2. Tính kích thước của mảnh đất?
Câu 4:
Một đội công nhân có 63 người nhận sửa xong một quãng đường trong 11 ngày. Hỏi muốn làm xong quãng đường đó trong 7 ngày thì cần thêm bao nhiêu người nữa ? (Mức làm của mỗi người như nhau).
Câu 5:
Tìm số tự nhiên có hai chữ số biết số đó chia cho tổng các chữ số của nó thu được 7 dư 6.
Câu 6:
Cho tam giác ABC thỏa mãn a4 = b4 + c4. Chứng minh rằng:
2sin2A = tan B.tan CCâu 7:
Cho tam giác ABC. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Kẻ DE và CF cùng vuông góc với đường thẳng AB ở E và F.
a) Chứng minh: A là trung điểm của EF.
b) Chứng minh: DF // CE.
về câu hỏi!