Cho p là số nguyên tố và một trong hai số 8p + 1 và 8p – 1 là số nguyên tố. Hỏi một trong hai số, số nào là số nguyên tố?
Quảng cáo
Trả lời:
Với p = 3, ta có:
⦁ 8p – 1 = 23 là số nguyên tố;
⦁ 8p + 1 = 25 không phải là số nguyên tố.
Với p ≠ 3, ta có: p không chia hết cho 3 nên 8p không chia hết cho 3.
Ta có 8p(8p – 1)(8p + 1) là tích của 3 số tự nhiên liên tiếp.
Suy ra 8p(8p – 1)(8p + 1) chia hết cho 3.
Lại có 8p – 1 > 3 (p ∈ ℕ).
Suy ra 8p – 1 không chia hết cho 3.
Do đó 8p + 1 chia hết cho 3.
Mà 8p + 1 > 3, p ∈ ℕ.
Suy ra 8p + 1 là hợp số.
Vậy 8p + 1 là hợp số; 8p – 1 là số nguyên tố.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt A = 1.2 + 2.3 + 3.4 + ... + 98.99.
Suy ra 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3.
= 1.2.3 + 2.3.(4 – 1) + 3.4.(5 – 2) + ... + 98.99.(100 – 97).
= 1.2.3 + 2.3.4 – 1.2.3 + 3.4.5 – 2.3.4 + ... + 98.99.100 – 97.98.99.
= 98.99.100
Suy ra A = 98.99.100 : 3 = 98.33.100 = 323 400.
Vậy A = 323 400.
Lời giải
Gọi số học sinh của trường đó là x (900 < x < 1000 và x ∈ ℕ).
Mỗi lần xếp hàng 3, hàng 4, hàng 5 đều không có ai lẻ hàng.
Suy ra x chia hết cho 3, 4, 5 hay x là BC(3, 4, 5).
Mà BCNN(3, 4, 5) = 60.
Do đó x ∈ B(60) = {0; 60; 120; 180; 240; 300; ...}.
Mà 900 < x < 1000 và x ∈ ℕ nên x = 960.
Vậy số học sinh của trường đó là 960.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.