Câu hỏi:
13/07/2024 2,062Tìm số nguyên tố p sao cho p + 6; p + 12; p + 18; p + 24 đều là các số nguyên tố.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Với p = 2, ta có: p + 6 = 8 không phải là số nguyên tố.
Với = 3, ta có: p + 6 = 9 không phải là số nguyên tố.
Với p = 5, ta có: p + 6 = 11; p + 12 = 17; p + 18 = 23; p + 24 = 29 đều là các số nguyên tố.
Nếu p > 5 và p là số nguyên tố thì p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (k ∈ ℕ*).
⦁ Nếu p = 5k + 1 thì p + 24 = 5k + 1 + 24 = 5k + 25 = 5(k + 5) là một số chia hết cho 5 (loại).
⦁ Nếu p = 5k + 2 thì p + 18 = 5k + 2 + 18 = 5k + 20 = 5(k + 4) là một số chia hết cho 5 (loại).
⦁ Nếu p = 5k + 3 thì p + 12 = 5k + 3 + 12 = 5k + 15 = 5(k + 3) là một số chia hết cho 5 (loại).
⦁ Nếu p = 5k + 4 thì p + 6 = 5k + 4 + 6 = 5k + 10 = 5(k + 2) là một số chia hết cho 5 (loại).
Vậy ta đã chứng minh được p = 5 là giá trị duy nhất thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Số học sinh của một trường là một số tự nhiên có 3 chữ số và lớn hơn 900. Mỗi lần xếp hàng 3, hàng 4, hàng 5 đều không có ai lẻ hàng. Tính số học sinh của trường đó?
Câu 4:
Câu 5:
Cho A = 5 + 52 + 53 + ... + 5100.
a) Số A là số nguyên tố hay hợp số?
b) Số A có phải là số chính phương không?
về câu hỏi!