Cho các số a, b, c khác nhau đôi một và thoả mãn a2 – 2b = b2 – 2c = c2 – 2a.
Tính giá trị của biểu thức A = (a + b + 2).(b + c + 2).(c + a + 2).
Cho các số a, b, c khác nhau đôi một và thoả mãn a2 – 2b = b2 – 2c = c2 – 2a.
Tính giá trị của biểu thức A = (a + b + 2).(b + c + 2).(c + a + 2).
Quảng cáo
Trả lời:
Ta có: a2 – 2b = c2 – 2a
⇔ a2 – c2 = 2b – 2a
⇔ (a – c).(a + c) = 2(b – a)
Chứng minh tương tự ta có: và
⇒ A = (a + b + 2).(b + c + 2).(c + a + 2)
.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Trung bình cộng của hai số là: 45 – 7 = 38
Tổng của hai số là: 38 × 2 = 76
Số bé là: 76 – 45 = 31
Đáp số: 31.
Lời giải
Ta có:
Do với mọi x ≠ 0, với mọi x, y
⇒ P = xy + 2 ≥ 0
⇒ P = xy ≥ ‒2
Dấu “=” xảy ra khi và chỉ khi hoặc .
Vậy giá trị nhỏ nhất của P là ‒2 khi (x; y) ∈ {(–1; 2); (1; –2)}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.