Câu hỏi:

18/06/2023 3,086

Có bao nhiêu số tự nhiên có 6 chữ số khác nhau mà có mặt chữ số 0 và chữ số 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số cần tìm có dạng:abcdef¯

+ Trường hợp 1

Cách chọn vị trí cho số 0 và 1:  A62

Cách chọn vị trí cho 4 số còn lại: A84

Suy ra số cách chọn là: A62  A84

+ Trường hợp 2:

Số chữ số có số 0 đứng đầu là: A84 

- Cách chọn vị trí cho số 1: 5 cách

- Cách chọn vị trí cho 4 số còn lại: A84

Vậy có: 5 .

 Vậy số chữ số có 6 chữ số khác nhau mà có mặt chữ số 0 và chữ số 1 là:

A62. A84– 5 .A84 = 42000 (số).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt a + 1 = x2; 2a + 1 = y2;

a phải chẵn vì 2a = y2 – 1 = (y – 1)(y + 1) suy ra 2a chia hết cho 8 vì y – 1 và y + 1 là tích của 2 số chẵn liên tiếp

Vậy a chia hết cho 2. (1)

a = (x – 1)(x + 1) vì a là số chẵn nên suy ra a chia hết cho 8 do x – 1 và x + 1 là tích của 2 số chẵn liên tiếp (2)

Ta cần chứng minh x không chia hết cho 3.

Giả sử x chia hết cho 3 x = 3k

2(a + 1) –1 = 2(x – 1)(x + 1) –1 = 2(9k2 – 1) – 1 = 18k2 – 3

2a + 1 chia hết cho 3 vô lý vì ta có 2(a + 1) chia hết cho 3 nhưng – 1 không chia hết cho 3 x không chia hết cho 3 hay hoặc x – 1, hoặc x + 1 chia hết cho 3.

Vậy x chia 3 dư 1 hoặc x chia 3 dư 2 mà x là số chính phương nên x chia 3 dư 1.

Khi đó: a = x2 – 1 chia hết cho 3 hay a chia hết cho 3 (3)

Từ (1), (2) và (3) suy ra: a chia hết cho 24.

Lời giải

Theo bài ra ta có:

4n + 9 2n + 1

4n + 2 + 7 2n + 1

2(2n + 1) +7 2n + 1

7 2n + 1

Suy ra: 2n + 1 Ư(7) = {1; 7}

Vậy n {0; 3}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

23mbằng bao nhiêu cm?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay