Câu hỏi:

13/07/2024 878 Lưu

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

a) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC. a) Chứng minh tứ giác BHEK là tứ giác nội tiếp. (ảnh 1)

a) Vì EH AB tại H hay BHE^=90°

Vì EK BC tại K hay EKB^=90°

Xét tứ giác BHEK có:

BHE^+EKB^=180°

Tứ giác BHEK nội tiếp đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

y = sinx + cosx

y=2sinx+π4

Ta có: −1 ≤ sinx ≤ 1

22sinx+π42

Vậy Max=2 ; Min=2 .

Lời giải

Do đồ thị hàm số (P) đi qua A nên ta có c = 1.

(P) có đỉnh nằm trên trục hoành nên:

Δ4a=0Δ=0

b2 – 4ac = 0

b2 = 4ac = 4a

a=b24(1)

Do đồ thị hàm số (P) đi qau B(2; 1) nên:

4a + 2b + c = 1

4a + 2b = 0

Thay (1) vào ta có:

b2 + 2b = 0

b=0b=2

Với b = 0 suy ra a = 0 (loại)

Với b = −2 suy ra a = 1 (thỏa mãn)

Vậy phương trình cần tìm là: y = x2 – 2x + 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP