Câu hỏi:

30/06/2023 4,815

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(VT = \frac{{abc}}{{{a^3}\left( {b + c} \right)}} + \frac{{abc}}{{{b^3}\left( {c + a} \right)}} + \frac{{abc}}{{{c^3}\left( {a + b} \right)}}\)

\( = \frac{{bc}}{{{a^2}\left( {b + c} \right)}} + \frac{{ac}}{{{b^2}\left( {c + a} \right)}} + \frac{{ab}}{{{c^2}\left( {a + b} \right)}}\)

\( = \frac{{{b^2}{c^2}}}{{{a^2}bc\left( {b + c} \right)}} + \frac{{{a^2}{c^2}}}{{{b^2}ac\left( {c + a} \right)}} + \frac{{{a^2}{b^2}}}{{{c^2}ab\left( {a + b} \right)}}\).

Áp dụng bất đẳng thức Cauchy – Schwarz dạng Engel, ta có:

\(VT \ge \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{{a^2}bc\left( {b + c} \right) + {b^2}ac\left( {c + a} \right) + {c^2}ab\left( {a + b} \right)}}\)

\( = \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{abc\left( {ab + ac + bc + ab + ac + bc} \right)}}\)

\( = \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{2\left( {ab + ac + bc} \right)}} = \frac{{bc + ac + ab}}{2}\).

Áp dụng bất đẳng thức Cauchy, ta được: \[bc + ac + ab \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} = 3\].

Vì vậy \(VT \ge \frac{{bc + ac + ab}}{2} \ge \frac{3}{2}\).

Dấu “=” xảy ra a = b = c = 1.

Vậy ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Xem đáp án » 30/06/2023 15,913

Câu 2:

Số tập con của tập hợp A = {x ℝ | 3(x2 + x)2 – 2x2 – 2x = 0} là bao nhiêu?

Xem đáp án » 30/06/2023 15,481

Câu 3:

Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:

a) ∆BAE = ∆CAD;

b) ∆MDC cân;

c) HK = HC.

Xem đáp án » 30/06/2023 6,445

Câu 4:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Xem đáp án » 30/06/2023 4,364

Câu 5:

Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?

Xem đáp án » 30/06/2023 3,679

Câu 6:

Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.

Xem đáp án » 30/06/2023 3,350

Bình luận


Bình luận