Câu hỏi:

30/06/2023 4,363

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P (ảnh 1)

a) Ta có MN, NP, PQ, QM lần lượt là đường trung bình của các tam giác ABC, BCD, ACD, ABD.

Suy ra MN // AC; NP // BD; PQ // AC; QM // BD.

Mà AC BD (giả thiết).

Do đó MN NP; PQ QM và MN QM.

Suy ra \(\widehat {MNP} = \widehat {QMN} = \widehat {PQM} = 90^\circ \).

Vậy tứ giác MNPQ là hình chữ nhật.

b) Ta có tứ giác MNPQ là hình chữ nhật (kết quả câu a).

Vì vậy để tứ giác MNPQ là hình vuông thì MN = NP.

\(MN = \frac{{AC}}{2};NP = \frac{{BD}}{2}\).

Suy ra AC = BD.

Vậy tứ giác MNPQ là hình vuông thì tứ giác ABCD cần thêm điều kiện AC = BD.

c) Ta có \(MN = \frac{{AC}}{2} = \frac{6}{2} = 3\,\,\left( {cm} \right);NP = \frac{{BD}}{2} = \frac{8}{2} = 4\,\,\left( {cm} \right)\).

Diện tích hình chữ nhật MNPQ là: S = MN.NP = 3.4 = 12 (cm2).

Vậy diện tích tứ giác MNPQ bằng 12 cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Xem đáp án » 30/06/2023 15,912

Câu 2:

Số tập con của tập hợp A = {x ℝ | 3(x2 + x)2 – 2x2 – 2x = 0} là bao nhiêu?

Xem đáp án » 30/06/2023 15,481

Câu 3:

Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:

a) ∆BAE = ∆CAD;

b) ∆MDC cân;

c) HK = HC.

Xem đáp án » 30/06/2023 6,443

Câu 4:

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Xem đáp án » 30/06/2023 4,815

Câu 5:

Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?

Xem đáp án » 30/06/2023 3,678

Câu 6:

Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.

Xem đáp án » 30/06/2023 3,350

Bình luận


Bình luận