Câu hỏi:

30/06/2023 5,902

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P (ảnh 1)

a) Ta có MN, NP, PQ, QM lần lượt là đường trung bình của các tam giác ABC, BCD, ACD, ABD.

Suy ra MN // AC; NP // BD; PQ // AC; QM // BD.

Mà AC BD (giả thiết).

Do đó MN NP; PQ QM và MN QM.

Suy ra \(\widehat {MNP} = \widehat {QMN} = \widehat {PQM} = 90^\circ \).

Vậy tứ giác MNPQ là hình chữ nhật.

b) Ta có tứ giác MNPQ là hình chữ nhật (kết quả câu a).

Vì vậy để tứ giác MNPQ là hình vuông thì MN = NP.

\(MN = \frac{{AC}}{2};NP = \frac{{BD}}{2}\).

Suy ra AC = BD.

Vậy tứ giác MNPQ là hình vuông thì tứ giác ABCD cần thêm điều kiện AC = BD.

c) Ta có \(MN = \frac{{AC}}{2} = \frac{6}{2} = 3\,\,\left( {cm} \right);NP = \frac{{BD}}{2} = \frac{8}{2} = 4\,\,\left( {cm} \right)\).

Diện tích hình chữ nhật MNPQ là: S = MN.NP = 3.4 = 12 (cm2).

Vậy diện tích tứ giác MNPQ bằng 12 cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông (ảnh 1)

a) Ta có tam giác ADB vuông cân tại D.

Suy ra \(\widehat {DAB} = 45^\circ \).

Chứng minh tương tự, ta được \(\widehat {CAE} = 45^\circ \).

Ta có \(\widehat {DAB} + \widehat {BAC} + \widehat {CAE} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \).

Vậy ba điểm D, A, E thẳng hàng.

b) Tam giác ABC vuông tại A có AM là đường trung tuyến.

Suy ra MA = MB = MC.

Do đó M nằm trên đường trung trực của đoạn AB        (1)

Chứng minh tương tự, ta được D nằm trên đường trung trực của đoạn AB        (2)

Từ (1), (2), suy ra DM là đường trung trực của đoạn AB.

Mà DM cắt AB tại I.

Do đó DM AB tại I.

Chứng minh tương tự, ta được ME AC tại K.

Tứ giác IAKM, có: \(\widehat {MIA} = \widehat {IAK} = \widehat {AKM} = 90^\circ \).

Vậy tứ giác IAKM là hình chữ nhật.

c) Tam giác ADB vuông cân tại D có DI là đường cao.

Suy ra DI cũng là đường phân giác của tam giác ADB.

Do đó \[\widehat {ADI} = 90^\circ :2 = 45^\circ \].

\(\widehat {DME} = 90^\circ \) (do tứ giác IAKM là hình chữ nhật).

Vậy tam giác DME là tam giác vuông cân tại M.

Lời giải

Ta có 3(x2 + x)2 – 2x2 – 2x = 0.

3(x2 + x)2 – 2(x2 + x) = 0.

(x2 + x)[3(x2 + x) – 2] = 0.

\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} + x = 0\\3{x^2} + 3x - 2 = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{{ - 3 \pm \sqrt {33} }}{6}\end{array} \right.\]

Vì vậy \(A = \left\{ {0; - 1;\frac{{ - 3 \pm \sqrt {33} }}{6}} \right\}\).

Vậy số tập con của tập A là 23 = 8 tập con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP