Câu hỏi:
30/06/2023 6,652Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.
b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.
c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).
d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì D thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BDC} = 90^\circ \).
Suy ra BD ⊥ AC.
Ta có AB là tiếp tuyến của (O), với B là tiếp điểm.
Suy ra \(\widehat {ABC} = 90^\circ \).
Tam giác ABC vuông tại B có BD là đường cao: AB2 = AD.AC (Hệ thức lượng trong tam giác vuông).
Vậy BD vuông góc AC và AB2 = AD.AC.
b) Xét tam giác BEC có O là trung điểm BC (do BC là đường kính của (O)) và OH // CE (giả thiết).
Suy ra OH là đường trung bình của tam giác BEC.
Vậy H là trung điểm của BE.
Vì E thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BEC} = 90^\circ \).
Suy ra BE ⊥ CE.
Mà CE // OH (giả thiết).
Do đó OH ⊥ BE hay AH ⊥ BE.
Tam giác ABE có AH vừa là đường trung tuyến, vừa là đường cao.
Suy ra tam giác ABE cân tại A.
Do đó AB = AE.
Xét ∆ABO và ∆AEO, có:
AO chung;
AB = AE (chứng minh trên);
OB = OE (= R).
Do đó ∆ABO = ∆AEO (c.c.c).
Suy ra \(\widehat {AEO} = \widehat {ABO} = 90^\circ \) (cặp góc tương ứng).
Vậy AE là tiếp tuyến của (O).
c) Tam giác OBA vuông tại B có BH là đường cao: OB2 = OH.OA (Hệ thức lượng trong tam giác vuông).
Suy ra OC2 = OH.OA.
Xét ∆OHC và ∆OCA, có:
\(\frac{{OH}}{{OC}} = \frac{{OC}}{{OA}}\) (OC2 = OH.OA);
\(\widehat {COH}\) chung.
Do đó (c.g.c).
Vậy \(\widehat {OCH} = \widehat {OAC}\) (cặp góc tương ứng).
d) Ta có \(\widehat {OCF} = \widehat {FCE}\,\,\left( { = \widehat {OFC}} \right)\).
Lại có \(\widehat {OCH} = \widehat {ACE}\,\,\left( { = \widehat {OAC}} \right)\).
Suy ra \(\widehat {HCF} = \widehat {FCA}\).
Khi đó CF là tia phân giác của \(\widehat {HCA}\).
Áp dụng tính chất đường phân giác cho tam giác HCA, ta được: \(\frac{{HF}}{{FA}} = \frac{{HC}}{{CA}}\).
Vậy FA.CH = HF.CA (điều phải chứng minh).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC.BD = R2.
c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 2:
Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.
Câu 3:
Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.
Câu 4:
Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.
a) Chứng minh CB là tiếp tuyến của (O).
b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.
c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .
Câu 5:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với đáy và góc tạo bởi SB với đáy (ABC) bằng 60°. Tính thể tích khối chóp S.ABC tính theo a.
Câu 6:
Cho đường thẳng (d): y = 2x + 3 và đường thẳng (d’): y = (m + 1)x + 5 (m là tham số, m ≠ –1).
a) Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy.
b) Tìm m để đường thẳng (d) song song với đường thẳng (d’).
c) Tìm m để hai đường thẳng (d) và (d’) cắt nhau tại điểm A nằm bên trái trục tung.
về câu hỏi!