Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
+ Cung lồi: Tại mọi điểm của cung AC, tiếp tuyến luôn nằm bên trên cung, khi đó ta nói cung AC là một cung lồi. Khoảng [a; c] ứng với cung lồi AC gọi là khoảng lồi của đồ thị (với a là hoành độ điểm A, c là hoành độ điểm C).
+ Cung lõm: Trên cung CB, mọi tiếp tuyến đều nằm dưới đồ thị, khi đó CB được gọi là cung lõm và đoạn [c; b] là khoảng lõm của đồ thị.
+ Điểm uốn: Điểm chuyển tiếp giữa cung lồi và cung lõm (từ lồi chuyển sang lõm hoặc từ lõm chuyển sang lồi) gọi là điểm uốn của đồ thị. Trong đồ thị trên, điểm C là điểm uốn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.
Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).
Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).
Mà \(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).
Vì vậy \(\widehat {AID} = \widehat {ADI}\).
Suy ra tam giác ADI cân tại A.
Do đó AD = AI.
Mà AB = 2AI (I là trung điểm của AB).
Vậy AB = 2AD (điều phải chứng minh).
b) Gọi J là trung điểm của DI.
Tam giác ADI có AJ là đường trung tuyến.
Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.
Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).
Xét ∆AJD và ∆DHA, có:
\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);
AD là cạnh chung;
\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).
Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).
Suy ra DJ = AH (cặp cạnh tương ứng).
Mà DI = 2DJ (J là trung điểm của DI).
Vậy DI = 2AH (điều phải chứng minh).
c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).
Suy ra tam giác IBC cân tại B.
Mà \(\widehat {IBC} = \widehat {ADC} = 60^\circ \).
Do đó tam giác IBC đều.
Vì vậy IC = IB = IA.
Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).
Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).
Vậy AD ⊥ AC (điều phải chứng minh).
Lời giải
⦁ Ta có \({\sin ^2}a = 1 - {\cos ^2}a = 1 - {\left( {\frac{4}{5}} \right)^2} = \frac{9}{{25}}\).
\( \Rightarrow \sin a = \pm \frac{3}{5}\).
Vì 0° < a < 90° nên sina > 0.
Do đó \(\sin a = \frac{3}{5}\).
⦁ Ta có \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{3}{5}:\frac{4}{5} = \frac{3}{4}\).
⦁ Ta có \(\cot a = \frac{1}{{\tan a}} = \frac{4}{3}\).
Vậy \(\sin a = \frac{3}{5}\); \(\tan a = \frac{3}{4}\) và \(\cot a = \frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)