Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.
Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 – 2x + 3 – m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.
Quảng cáo
Trả lời:

Phương trình hoành độ giao điểm của (P) và trục Ox là: x2 – 2x + 3 – m = 0 (1)
∆’ = 1 – 3 + m = m – 2.
Ta có parabol (P) cắt trục Ox tại hai điểm A, B phân biệt.
⇔ Phương trình (1) có 2 nghiệm phân biệt.
⇔ ∆’ > 0.
⇔ m > 2 (*)
Hai nghiệm là: \(\left[ \begin{array}{l}{x_A} = 1 + \sqrt {m - 2} \\{x_B} = 1 - \sqrt {m - 2} \end{array} \right.\)
Khi đó ta có tọa độ giao điểm \[A\left( {1 + \sqrt {m - 2} ;0} \right),\,\,B\left( {1 - \sqrt {m - 2} ;0} \right)\].
Theo đề, ta có \(AB = 2\sqrt {m - 2} = 2\).
\( \Leftrightarrow \sqrt {m - 2} = 1\).
⇔ m – 2 = 1.
⇔ m = 3.
So với (*), nhận m = 3.
Vậy m0 = 3 thỏa mãn yêu cầu bài toán.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.
Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).
Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).
Mà \(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).
Vì vậy \(\widehat {AID} = \widehat {ADI}\).
Suy ra tam giác ADI cân tại A.
Do đó AD = AI.
Mà AB = 2AI (I là trung điểm của AB).
Vậy AB = 2AD (điều phải chứng minh).
b) Gọi J là trung điểm của DI.
Tam giác ADI có AJ là đường trung tuyến.
Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.
Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).
Xét ∆AJD và ∆DHA, có:
\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);
AD là cạnh chung;
\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).
Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).
Suy ra DJ = AH (cặp cạnh tương ứng).
Mà DI = 2DJ (J là trung điểm của DI).
Vậy DI = 2AH (điều phải chứng minh).
c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).
Suy ra tam giác IBC cân tại B.
Mà \(\widehat {IBC} = \widehat {ADC} = 60^\circ \).
Do đó tam giác IBC đều.
Vì vậy IC = IB = IA.
Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).
Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).
Vậy AD ⊥ AC (điều phải chứng minh).
Lời giải
⦁ Ta có \({\sin ^2}a = 1 - {\cos ^2}a = 1 - {\left( {\frac{4}{5}} \right)^2} = \frac{9}{{25}}\).
\( \Rightarrow \sin a = \pm \frac{3}{5}\).
Vì 0° < a < 90° nên sina > 0.
Do đó \(\sin a = \frac{3}{5}\).
⦁ Ta có \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{3}{5}:\frac{4}{5} = \frac{3}{4}\).
⦁ Ta có \(\cot a = \frac{1}{{\tan a}} = \frac{4}{3}\).
Vậy \(\sin a = \frac{3}{5}\); \(\tan a = \frac{3}{4}\) và \(\cot a = \frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Khánh Duy
AB = 4 mà ta?