Cho hình chữ nhật ABCD có M là điểm thuộc cạnh AB sao cho \(AM = \frac{1}{4}AB = 3cm.\) Tìm điểm N trên cạnh DC sao cho diện tích hình MBCN gấp đôi diện tích hình MNDA.
Cho hình chữ nhật ABCD có M là điểm thuộc cạnh AB sao cho \(AM = \frac{1}{4}AB = 3cm.\) Tìm điểm N trên cạnh DC sao cho diện tích hình MBCN gấp đôi diện tích hình MNDA.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
• Vì ABCD là hình chữ nhật ⇒ \(\left\{ {\begin{array}{*{20}{c}}{AB\parallel CD;BC\parallel AD}\\{AB = CD;BC = AD}\end{array}} \right..\)
• Vì AM // CN ⇒ MNDA là hình thang.
• Vì BM // ND ⇒ MBCN là hình thang.
Ta có \(AM = \frac{1}{4}AB = 3cm\) ⇒ AB = 12cm.
Ta có \({S_{MBCN}} = \frac{1}{2}BC\left( {CN + MB} \right);{S_{MNDA}} = \frac{1}{2}AD\left( {AM + DN} \right).\)
Vì diện tích hình thang MBCN gấp đôi diện tích hình thang MNDA
⇒ \({S_{MBCN}} = 2{S_{MNDA}}\)
⇔ \(\frac{1}{2}BC\left( {CN + MB} \right) = 2.\frac{1}{2}AD\left( {AM + DN} \right)\)
⇔ BC(CN + MB) = 2AD(AM + DN)
⇔ CN + MB = 2(AM + DN) (vì BC = AD)
⇔ CD – DN + AB – AM = 2AM + 2DN
⇔ 2AB = 3AM + 3DN
⇔ 2.12 = 3.3 + 3DN
⇔ 3DN = 15
⇔ DN = 5 cm.
Vậy để diện tích hình MBCN gấp đôi diện tích hình MNDA thì điểm N thuộc cạnh DC sao cho DN = 5 cm.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà \(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà \(BQ \cap AI = H\)
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)
⇒ P là trung điểm AB và P là trung điểm QM
\(\Delta ABI\) vuông tại I có đường trung tuyến IP
⇒ \(IP = \frac{1}{2}AB\)
⇒ IP = PQ
⇒ \(\Delta IPQ\) cân tại P.
Lời giải
a) Xét \(\Delta ADE\) và \(\Delta ABC\) có:
AD = AB
\(\widehat {DAE} = \widehat {BAC}\) (2 góc đối đỉnh)
AC = AE
⇒ \(\Delta ADE = \Delta BAC\left( {c.g.c} \right)\)
⇒ \(\widehat {ADE} = \widehat {ABC}\) (2 góc tương ứng) mà chúng ở vị trí so le trong với nhau
⇒ BC // DE (đpcm)
b) Xét \(\Delta DAM\) và \(\Delta BAN\) có:
\(\widehat {DAM} = \widehat {BAN}\) (2 góc đối đỉnh)
AD = AB
\(\widehat {ABN} = \widehat {ADM}\) (CMT)
⇒ \(\Delta DAM = \Delta BAN\left( {g.c.g} \right)\)
⇒ AM = AN (2 cạnh tương ứng) (dpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. −8;
B. \(3\sqrt {11} - 13\);
C. −39;
D. −21.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.