Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho \(AM = \frac{{AC}}{4},\) N là trung điểm của đoạn thẳng DC. Tìm mệnh đề đúng?
Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho \(AM = \frac{{AC}}{4},\) N là trung điểm của đoạn thẳng DC. Tìm mệnh đề đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D

Đặt \(\overrightarrow {AB} = \vec x;\,\,\overrightarrow {AD} = \vec y\)
Vì ABCD là hình vuông nên AB và AD vuông góc với nhau và AB = AD
⇒ \(\vec x.\vec y = 0;\,\,{\vec x^2} = {\vec y^2}\)
Khi đó:
\(\overrightarrow {MB} = \overrightarrow {AB} - \overrightarrow {AM} = \frac{1}{4}\left( {3\vec x - \vec y} \right);\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{1}{4}\left( {\vec x + 3\vec y} \right)\)
Ta có: \(\overrightarrow {MB} .\overrightarrow {MN} = \frac{1}{{16}}\left( {3\vec x - \vec y} \right)\left( {\vec x + 3\vec y} \right)\)
\( = \frac{1}{{16}}\left( {3{{\vec x}^2} - 3{{\vec y}^2} + 8\vec x.\vec y} \right) = 0\)
Mặt khác:
\({\overrightarrow {MB} ^2} = \frac{1}{{16}}{\left( {3\vec x - \vec y} \right)^2} = \frac{5}{8}{\vec y^2};{\overrightarrow {MN} ^2} = \frac{1}{{16}}{\left( {\vec x + 3\vec y} \right)^2} = \frac{5}{8}{\vec y^2}.\)
Vậy tam giác BMN vuông cân tại M.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà \(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà \(BQ \cap AI = H\)
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)
⇒ P là trung điểm AB và P là trung điểm QM
\(\Delta ABI\) vuông tại I có đường trung tuyến IP
⇒ \(IP = \frac{1}{2}AB\)
⇒ IP = PQ
⇒ \(\Delta IPQ\) cân tại P.
Lời giải
Ta có: sin2a + cos2a = 1
⇒ cos2a = 1 – sin2a
⇒ cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)
\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)
\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)
Mà a là góc tù nên cosa < 0
\( \Rightarrow \cos a = - \frac{3}{5}\)
\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)
\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)
Vậy \(A = \frac{{11}}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.