Câu hỏi:
11/07/2024 1,176Cho đa thức bậc 2 có dạng P(x) = ax2 + bx + c biết rằng P(x) thỏa mãn 2 điều kiện sau: P(0) = −2 và 4P(x) – P(2x – 1) = 6x – 6. Chứng minh rằng a + b + c = 0 và xác định đa thức P(x).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có P(0) = −2 ⇒ a.0 + b.0 + c = −2 ⇒ c = −2
Ta có 4P(x) – P(2x – 1) = 6x – 6
⇔ 4(ax2 + bx + c) – [a(2x – 1)2 + b(2x – 1) + c] = 6x – 6
⇔ 4ax2 + 4bx + 4c – a(4x2 – 4x + 1) – 2bx + b – c = 6x – 6
⇔ 4ax2 + 4bx + 4c – 4ax2 + 4ax – a – 2bx + b – c = 6x – 6
⇔ 4ax + 2bx + (−a + b + 3c) = 6x – 6
⇔ (4a + 2b)x + (−a + b + 3c) = 6x – 6
⇔ \(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b + 3c = - 6}\end{array}} \right.\) ⇔ \(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b = - 6 - 3.\left( { - 2} \right)}\end{array}} \right.\)
⇔ \(\left\{ {\begin{array}{*{20}{c}}{4a + 2b = 6}\\{ - a + b = 0}\end{array}} \right.\) ⇔ \(\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\end{array}} \right.\)
Ta có: a + b + c = 1 + 1 + (−2) = 0 (đpcm)
Vậy P(x) = x2 + x – 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!