Câu hỏi:
03/07/2023 1,050
Cho tam giác ABC nội tiếp đường tròn tâm O, hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
a) Tứ giác BFCH là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh 3 điểm H; M; F thẳng hàng.
c) Chứng minh \(OM = \frac{1}{2}AH.\)
Cho tam giác ABC nội tiếp đường tròn tâm O, hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.
a) Tứ giác BFCH là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh 3 điểm H; M; F thẳng hàng.
c) Chứng minh \(OM = \frac{1}{2}AH.\)
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) \(\widehat {ACF} = 90^\circ \)(chắn nửa đường tròn)
⇒ FC vuông góc với AC
Lại có BH vuông góc với AC
⇒ FC // BH (1)
Chứng minh tương tự: BF // CH (2)
Từ (1) và (2) ⇒ BFCH là hình bình hành.
b) Vì BFCH là hình bình hành nên 2 đường chéo HF và BC giao nhau tại trung điểm mỗi đường.
Mà M là trung điểm của BC ⇒ M đồng thời là trung điểm của HF
⇒ H, M, F thẳng hàng (đpcm)
c) Xét tam giác AHF có O là trung điểm của AF
Có M là trung điểm của HF ⇒ OM là đường trung điểm của tam giác AHF
⇒ \(OM = \frac{1}{2}AH\) (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà \(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà \(BQ \cap AI = H\)
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)
⇒ P là trung điểm AB và P là trung điểm QM
\(\Delta ABI\) vuông tại I có đường trung tuyến IP
⇒ \(IP = \frac{1}{2}AB\)
⇒ IP = PQ
⇒ \(\Delta IPQ\) cân tại P.
Lời giải
Ta có: sin2a + cos2a = 1
⇒ cos2a = 1 – sin2a
⇒ cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)
\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)
\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)
Mà a là góc tù nên cosa < 0
\( \Rightarrow \cos a = - \frac{3}{5}\)
\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)
\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)
Vậy \(A = \frac{{11}}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.