Câu hỏi:

03/07/2023 4,697

Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh:

a) \[\Delta ABC = \Delta ADE\].

b) DE = BC và DE // BC.

c) \[\Delta AEN = \Delta ACM\].

d) M, A, N thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao (ảnh 1)

a) Xét ΔABC và ΔADE có:

AB = AD

\(\widehat {BAC} = \widehat {DAE}\) (hai góc đối đỉnh)

AC = AE

Do đó \[\Delta ABC = \Delta ADE\left( {c.g.c} \right)\] (đpcm)

b) Vì \[\Delta ABC = \Delta ADE\] (cmt)

BC = DE (hai cạnh tương ứng), \[\widehat {ACB} = \widehat {AED}\](hai góc tương ứng).

Mặt khác \(\widehat {ACB},\widehat {AED}\) là hai góc ở vị trí so le trong.

DE // BC

Vậy DE = BC và DE song song với BC.

c) Ta có: \(EN = \frac{{DE}}{2};MC = \frac{{BC}}{2};DE = BC\) nên EN = MC

Xét \[\Delta AEN\]\(\Delta ACM\) có:

AE = AC

\(\widehat {NEA} = \widehat {MCA}\) (do \(\widehat {AED} = \widehat {ACB}\))

EN = CM (cmt)

\[\Delta AEN = \Delta ACM\left( {c.g.c} \right)\] (đpcm)

d) Do \[\Delta AEN = \Delta ACM\] (cmt)

\(\widehat {NAE} = \widehat {MAC}\) (hai góc tương ứng)

Ta có: \(\widehat {NAM} = \widehat {NAE} + \widehat {EAM} = \widehat {MAC} + \widehat {EAM}\)

\(\widehat {MAC} + \widehat {EAM} = \widehat {EAC} = {180^o}\) (hai góc kề bù)

Do đó \(\widehat {NAM} = {180^o}\)

Vậy ba điểm M, A, N thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.

Lời giải

Ta có: sin2a + cos2a = 1

cos2a = 1 – sin2a

cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)

\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)

\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)

Mà a là góc tù nên cosa < 0

\( \Rightarrow \cos a = - \frac{3}{5}\)

\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)

\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)

Vậy \(A = \frac{{11}}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay