Câu hỏi:

11/07/2024 5,215

Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho \(3\overrightarrow {BM} = 2\overrightarrow {BC} ,5\overrightarrow {AN} = 4\overrightarrow {AC} .\)

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {BC} .\overrightarrow {AC} .\)

b) Chứng minh AM vuông góc với BN.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho 3 vecto BM = 2 (ảnh 1)

a) Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \widehat {BAC} = a.a.\cos 60^\circ = \frac{{{a^2}}}{2};\)

\(\overrightarrow {BC} .\overrightarrow {AC} = \overrightarrow {CB} .\overrightarrow {CA} = CB.CA.\cos \widehat {BCA} = a.a.\cos 60^\circ = \frac{{{a^2}}}{2}.\)

b) Ta có: \(3\overrightarrow {BM} = 2\overrightarrow {BC} \)

\(3\left( {\overrightarrow {AM} - \overrightarrow {AB} } \right) = 2\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)

\(\overrightarrow {AM} = \frac{2}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AB} \)

Ta có: \(5\overrightarrow {AN} = 4\overrightarrow {AC} \)

\(5\left( {\overrightarrow {BN} - \overrightarrow {BA} } \right) = 4\overrightarrow {AC} \)

\(\overrightarrow {BN} = - \overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} \)

Ta có: \(\overrightarrow {AM} .\overrightarrow {BN} = \left( {\frac{2}{3}\overrightarrow {AC} + \frac{1}{3}\overrightarrow {AB} } \right)\left( { - \overrightarrow {AB} + \frac{4}{5}\overrightarrow {AC} } \right)\)

\( = - \frac{2}{3}\overrightarrow {AC} .\overrightarrow {AB} + \frac{8}{{15}}{\overrightarrow {AC} ^2} - \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{4}{{15}}\overrightarrow {AC} .\overrightarrow {AB} \)

\( = - \frac{2}{5}\overrightarrow {AC} .\overrightarrow {AB} + \frac{8}{{15}}{\overrightarrow {AC} ^2} - \frac{1}{3}{\overrightarrow {AB} ^2}\)

\( = - \frac{2}{3}.\frac{{{a^2}}}{2} + \frac{8}{{15}}{a^2} - \frac{1}{3}{a^2} = 0\)

AM BN AM vuông góc với BN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án » 11/07/2024 15,245

Câu 2:

Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.

Xem đáp án » 03/07/2023 11,605

Câu 3:

Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là

Xem đáp án » 03/07/2023 8,126

Câu 4:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Xem đáp án » 11/07/2024 6,017

Câu 5:

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Xem đáp án » 03/07/2023 5,503

Câu 6:

Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Xem đáp án » 03/07/2023 4,837

Bình luận


Bình luận