Câu hỏi:
03/07/2023 143Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:
a) Bốn quả lấy ra cùng màu;
b) Có ít nhất một quả màu trắng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Không gian mẫu là kết quả việc chọn ngẫu nhiên 4 quả cầu từ hộp 10 quả cầu.
⇒ \(n\left( \Omega \right) = C_{10}^4 = 210\)
a) A: “ Bốn quả lấy ra cùng màu”
TH1: Bốn quả lấy ra cùng đen
⇒ Có \(C_4^4 = 1\) cách.
TH2: Bốn quả lấy ra cùng trắng
⇒ Có \(C_6^4 = 15\) cách.
⇒ \(n\left( A \right) = 1 + 15 = 16.\)
⇒ \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{16}}{{210}} = \frac{8}{{105}}.\]
b. B: “ Cả 4 quả lấy ra đều màu đen”
⇒ \(\overline B \): “ Có ít nhất 1 quả màu trắng”.
Ta có: \(n\left( B \right) = C_4^4 = 1.\)
⇒ \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{1}{{210}}.\)
⇒ \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{1}{{210}} = \frac{{209}}{{210}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!