Câu hỏi:
11/07/2024 1,446Trong không gian Oxyz, cho mặt phẳng (P) : x – 2y + 2z + 6 = 0 và các điểm A(−1; 2; 3), B(3; 0; −1), C(1; 4; 7). Tìm điểm M thuộc (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi G là trọng tâm tam giác ABC có tọa độ là G(1; 2; 3).
Ta có: \(M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)
\( = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)
\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right) + 2\overrightarrow {MG} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right)\)
\( = 3M{G^2} + \left( {G{A^2} + G{B^2} + G{C^2}} \right)\)
MA2 + MB2 + MC2 đạt giá trị nhỏ nhất ⇔ MG nhỏ nhất (do GA2 + GB2 + GC2 không đổi)
⇔ M là hình chiếu của G trên (P)
Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n \left( {1; - 2;2} \right).\)
GM vuông góc với (P) nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương.
Phương trình của GM là: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 - 2t}\\{z = 3 + 2t}\end{array}} \right..\)
Tọa độ của điểm M(1 + t; 2 – 2t; 3 + 2t) thỏa mãn:
(1 + t) – 2(2 – 2t) + 2(3 + 2t) + 6 = 0 ⇔ \(t = - \frac{{11}}{9}.\)
⇒ \(M\left( { - \frac{2}{9};\frac{{40}}{9};\frac{5}{9}} \right).\)
Vậy \(M\left( { - \frac{2}{9};\frac{{40}}{9};\frac{5}{9}} \right)\) thì MA2 + MB2 + MC2 đạt giá trị nhỏ nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!