Câu hỏi:
11/07/2024 2,994Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC (E ∈ AB; F ∈ AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Tam giác ABC vuông tại A ⇒ \(\widehat {BAC} = 90^\circ .\)
Vì HE ⊥ AB, HF ⊥ AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)
Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)
⇒ Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Vì AEHF là hình chữ nhật ⇒ EH // AF và EH = AF (tính chất hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD ⇒ AF = FD.
⇒ EH // FD và EH = FD.
⇒ DHEF là hình bình hành (dấu hiệu nhận biết)
c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC ⇒ \(\Delta AMC\) cân tại M
⇒ \(\widehat {MAC} = \widehat {MCA}\)
Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo ⇒ \(\widehat {IAF} = \widehat {IFA}\)
Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)
⇒ \(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)
Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]
⇒ EF ⊥ AM tại O hay IF ⊥ AM tại O.
Xét \(\Delta KAM\) có: GM ⊥ KA; AH ⊥ KM.
Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)
Suy ra KI ⊥ AM mà IF ⊥ AM.
Do đó K, I, F thẳng hàng.
Ta có:
• Ba điểm E, I, F thẳng hàng.
• Ba điểm K, I, F thẳng hàng.
Do đó bốn điểm I, K, E, F thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Một đường thẳng đi qua A cắt các cạnh DE và BC theo thứ tự ở M và N. Chứng minh:
a) BC // DE.
b) AM = AN.
Câu 7:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận