Câu hỏi:

19/08/2025 5,566 Lưu

Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông (ảnh 1)

a) Tam giác ABC vuông tại A \(\widehat {BAC} = 90^\circ .\)

Vì HE AB, HF AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)

Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)

Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Vì AEHF là hình chữ nhật EH // AF và EH = AF (tính chất hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD AF = FD.

EH // FD và EH = FD.

DHEF là hình bình hành (dấu hiệu nhận biết)

c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC \(\Delta AMC\) cân tại M

\(\widehat {MAC} = \widehat {MCA}\)

Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo \(\widehat {IAF} = \widehat {IFA}\)

Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)

Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]

EF AM tại O hay IF AM tại O.

Xét \(\Delta KAM\) có: GM KA; AH KM.

Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)

Suy ra KI AM mà IF AM.

Do đó K, I, F thẳng hàng.

Ta có:

• Ba điểm E, I, F thẳng hàng.

• Ba điểm K, I, F thẳng hàng.

Do đó bốn điểm I, K, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.

Lời giải

Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia  (ảnh 1)

a) Xét \(\Delta ADE\)\(\Delta ABC\) có:

AD = AB

\(\widehat {DAE} = \widehat {BAC}\) (2 góc đối đỉnh)

AC = AE

\(\Delta ADE = \Delta BAC\left( {c.g.c} \right)\)

\(\widehat {ADE} = \widehat {ABC}\) (2 góc tương ứng) mà chúng ở vị trí so le trong với nhau

BC // DE (đpcm)

b) Xét \(\Delta DAM\)\(\Delta BAN\) có:

\(\widehat {DAM} = \widehat {BAN}\) (2 góc đối đỉnh)

AD = AB

\(\widehat {ABN} = \widehat {ADM}\) (CMT)

\(\Delta DAM = \Delta BAN\left( {g.c.g} \right)\)

AM = AN (2 cạnh tương ứng) (dpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP