Câu hỏi:

11/07/2024 2,492

Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông (ảnh 1)

a) Tam giác ABC vuông tại A \(\widehat {BAC} = 90^\circ .\)

Vì HE AB, HF AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)

Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)

Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Vì AEHF là hình chữ nhật EH // AF và EH = AF (tính chất hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD AF = FD.

EH // FD và EH = FD.

DHEF là hình bình hành (dấu hiệu nhận biết)

c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC \(\Delta AMC\) cân tại M

\(\widehat {MAC} = \widehat {MCA}\)

Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo \(\widehat {IAF} = \widehat {IFA}\)

Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)

Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]

EF AM tại O hay IF AM tại O.

Xét \(\Delta KAM\) có: GM KA; AH KM.

Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)

Suy ra KI AM mà IF AM.

Do đó K, I, F thẳng hàng.

Ta có:

• Ba điểm E, I, F thẳng hàng.

• Ba điểm K, I, F thẳng hàng.

Do đó bốn điểm I, K, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án » 11/07/2024 14,436

Câu 2:

Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.

Xem đáp án » 03/07/2023 10,103

Câu 3:

Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là

Xem đáp án » 03/07/2023 7,969

Câu 4:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Xem đáp án » 11/07/2024 5,186

Câu 5:

Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Xem đáp án » 03/07/2023 4,689

Câu 6:

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Xem đáp án » 03/07/2023 4,574

Câu 7:

Cho tam giác ABC đều cạnh a. Gọi M, N là các điểm sao cho \(3\overrightarrow {BM} = 2\overrightarrow {BC} ,5\overrightarrow {AN} = 4\overrightarrow {AC} .\)

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {BC} .\overrightarrow {AC} .\)

b) Chứng minh AM vuông góc với BN.

Xem đáp án » 11/07/2024 3,755

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store