Câu hỏi:

11/07/2024 2,996

Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông (ảnh 1)

a) Tam giác ABC vuông tại A \(\widehat {BAC} = 90^\circ .\)

Vì HE AB, HF AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)

Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)

Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Vì AEHF là hình chữ nhật EH // AF và EH = AF (tính chất hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD AF = FD.

EH // FD và EH = FD.

DHEF là hình bình hành (dấu hiệu nhận biết)

c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC \(\Delta AMC\) cân tại M

\(\widehat {MAC} = \widehat {MCA}\)

Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo \(\widehat {IAF} = \widehat {IFA}\)

Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)

Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]

EF AM tại O hay IF AM tại O.

Xét \(\Delta KAM\) có: GM KA; AH KM.

Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)

Suy ra KI AM mà IF AM.

Do đó K, I, F thẳng hàng.

Ta có:

• Ba điểm E, I, F thẳng hàng.

• Ba điểm K, I, F thẳng hàng.

Do đó bốn điểm I, K, E, F thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án » 11/07/2024 15,696

Câu 2:

Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.

Xem đáp án » 03/07/2023 11,831

Câu 3:

Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là

Xem đáp án » 03/07/2023 8,523

Câu 4:

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Xem đáp án » 03/07/2023 7,789

Câu 5:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Xem đáp án » 11/07/2024 7,637

Câu 6:

Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Một đường thẳng đi qua A cắt các cạnh DE và BC theo thứ tự ở M và N. Chứng minh:

a) BC // DE.

b) AM = AN.

Xem đáp án » 11/07/2024 7,581

Câu 7:

Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Xem đáp án » 03/07/2023 5,883