Câu hỏi:
11/07/2024 2,156Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC (E ∈ AB; F ∈ AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
c) Gọi I là giao điểm của EF và AH, M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Tam giác ABC vuông tại A ⇒ \(\widehat {BAC} = 90^\circ .\)
Vì HE ⊥ AB, HF ⊥ AC nên \(\widehat {HEA} = 90^\circ ,\widehat {HFA} = 90^\circ .\)
Xét tứ giác AEHF có: \(\widehat {EAF} = \widehat {HEA} = \widehat {HFA} = 90^\circ .\)
⇒ Tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Vì AEHF là hình chữ nhật ⇒ EH // AF và EH = AF (tính chất hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD ⇒ AF = FD.
⇒ EH // FD và EH = FD.
⇒ DHEF là hình bình hành (dấu hiệu nhận biết)
c) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của \(\Delta ABC\) nên AM = MC ⇒ \(\Delta AMC\) cân tại M
⇒ \(\widehat {MAC} = \widehat {MCA}\)
Vì AEHF là hình chữ nhật có I là giao điểm 2 đường chéo ⇒ \(\widehat {IAF} = \widehat {IFA}\)
Xét \(\Delta AHC\) có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)
⇒ \(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OFA} + \widehat {OAF} = 90^\circ \)
Xét \(\Delta OAF\) có: \[\widehat {OFA} + \widehat {OAF} = 90^\circ \Rightarrow \widehat {AOF} = 90^\circ \]
⇒ EF ⊥ AM tại O hay IF ⊥ AM tại O.
Xét \(\Delta KAM\) có: GM ⊥ KA; AH ⊥ KM.
Mà I là giao điểm của AH và GM nên I là trực tâm của \(\Delta KAM.\)
Suy ra KI ⊥ AM mà IF ⊥ AM.
Do đó K, I, F thẳng hàng.
Ta có:
• Ba điểm E, I, F thẳng hàng.
• Ba điểm K, I, F thẳng hàng.
Do đó bốn điểm I, K, E, F thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!