Câu hỏi:

03/07/2023 337

Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.

a) Chứng minh: tứ giác AOHC nội tiếp.

b) Chứng minh: AC.AE = AD.CE.

c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh: AM // BN.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là (ảnh 1)

a) Ta có: \(\widehat {CAB} = \widehat {OHC} = 90^\circ \) \(\widehat {CAB} + \widehat {OHC} = 180^\circ \).

Do đó tứ giác AHOC nội tiếp.

b) Xét \(\Delta ACD\)\(\Delta ECA\) có:

\(\widehat {CAD} = \widehat {AEC}\)

\(\widehat {ACE}\) chung

Do đó ∆ACD ∆ECA (g.g)

Suy ra \(\frac{{CA}}{{CE}} = \frac{{AD}}{{AE}}\) hay AC.AE = AD.CE.

c) Từ E kẻ đường thẳng song song với MN cắt AB tại I và BD tại F

\(\widehat {HEI} = \widehat {HCO}\)

Vì tứ giác AOHC nội tiếp \(\widehat {HAO} = \widehat {HCO} = \widehat {HEI}\)

Suy ra tứ giác AHIE nội tiếp

\(\widehat {IHE} = \widehat {IAE} = \widehat {BDE}\)

IH // BD

mà H là trung điểm của DE

I là trung điểm của EF

EF // MN và IE = IF

O là trung điểm của MN

Tứ giác AMBN là hình bình hành

AM // BN (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB.

c) Chứng minh tam giác PIQ cân.

Xem đáp án » 11/07/2024 12,598

Câu 2:

Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.

Xem đáp án » 03/07/2023 8,576

Câu 3:

Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là

Xem đáp án » 03/07/2023 7,783

Câu 4:

Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.

Xem đáp án » 03/07/2023 4,475

Câu 5:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Xem đáp án » 11/07/2024 4,402

Câu 6:

Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).

Xem đáp án » 03/07/2023 3,263

Câu 7:

Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)

Xem đáp án » 03/07/2023 2,341

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store