Câu hỏi:
03/07/2023 1,085
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.
a) Chứng minh: tứ giác AOHC nội tiếp.
b) Chứng minh: AC.AE = AD.CE.
c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh: AM // BN.
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax, với đường tròn (O) (A là tiếp điểm). Qua C thuộc tia Ax, vẽ đường thẳng cắt đường tròn (O) tại hai điểm D và E (D nằm giữa C và E; D và E nằm về hai phía của đường thẳng AB). Từ O vẽ OH vuông góc với đoạn thẳng DE tại H.
a) Chứng minh: tứ giác AOHC nội tiếp.
b) Chứng minh: AC.AE = AD.CE.
c) Đường thẳng CO cắt tia BD, tia BE lần lượt tại M và N. Chứng minh: AM // BN.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: \(\widehat {CAB} = \widehat {OHC} = 90^\circ \) ⇒ \(\widehat {CAB} + \widehat {OHC} = 180^\circ \).
Do đó tứ giác AHOC nội tiếp.
b) Xét \(\Delta ACD\) và \(\Delta ECA\) có:
\(\widehat {CAD} = \widehat {AEC}\)
\(\widehat {ACE}\) chung
Do đó ∆ACD ᔕ ∆ECA (g.g)
Suy ra \(\frac{{CA}}{{CE}} = \frac{{AD}}{{AE}}\) hay AC.AE = AD.CE.
c) Từ E kẻ đường thẳng song song với MN cắt AB tại I và BD tại F
⇒ \(\widehat {HEI} = \widehat {HCO}\)
Vì tứ giác AOHC nội tiếp ⇒ \(\widehat {HAO} = \widehat {HCO} = \widehat {HEI}\)
Suy ra tứ giác AHIE nội tiếp
⇒ \(\widehat {IHE} = \widehat {IAE} = \widehat {BDE}\)
⇒ IH // BD
mà H là trung điểm của DE
⇒ I là trung điểm của EF
⇒ EF // MN và IE = IF
⇒ O là trung điểm của MN
⇒ Tứ giác AMBN là hình bình hành
⇒ AM // BN (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà \(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà \(BQ \cap AI = H\)
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)
⇒ P là trung điểm AB và P là trung điểm QM
\(\Delta ABI\) vuông tại I có đường trung tuyến IP
⇒ \(IP = \frac{1}{2}AB\)
⇒ IP = PQ
⇒ \(\Delta IPQ\) cân tại P.
Lời giải
Ta có: sin2a + cos2a = 1
⇒ cos2a = 1 – sin2a
⇒ cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)
\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)
\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)
Mà a là góc tù nên cosa < 0
\( \Rightarrow \cos a = - \frac{3}{5}\)
\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)
\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)
Vậy \(A = \frac{{11}}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.