Câu hỏi:
11/07/2024 1,783
Cho x, y, z > 0 và xyz = 1. CMR: \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\)?
Cho x, y, z > 0 và xyz = 1. CMR: \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\)?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Áp dụng BĐT cô-si:
\(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{1 + y + 1 + z + 1 + x}} = \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)
Áp dụng BĐT cô-si: \(x + y + z \ge 3\sqrt[3]{{xyz}} = 3\)
Do đó: \(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)
\( \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + \left( {x + y + z} \right)}} = \frac{{x + y + z}}{2} \ge \frac{3}{2}\)
Dấu “=” xảy ra khi và chỉ khi x = y = z = 1.
Vậy \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\), dấu “=” xảy ra khi và chỉ khi x = y = z = 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà \(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà \(BQ \cap AI = H\)
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)
⇒ P là trung điểm AB và P là trung điểm QM
\(\Delta ABI\) vuông tại I có đường trung tuyến IP
⇒ \(IP = \frac{1}{2}AB\)
⇒ IP = PQ
⇒ \(\Delta IPQ\) cân tại P.
Lời giải
Ta có: sin2a + cos2a = 1
⇒ cos2a = 1 – sin2a
⇒ cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)
\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)
\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)
Mà a là góc tù nên cosa < 0
\( \Rightarrow \cos a = - \frac{3}{5}\)
\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)
\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)
Vậy \(A = \frac{{11}}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.