Câu hỏi:
11/07/2024 1,054Cho x, y, z > 0 và xyz = 1. CMR: \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng BĐT cô-si:
\(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{1 + y + 1 + z + 1 + x}} = \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)
Áp dụng BĐT cô-si: \(x + y + z \ge 3\sqrt[3]{{xyz}} = 3\)
Do đó: \(\frac{{{x^2}}}{{1 + y}} + \frac{{{y^2}}}{{1 + z}} + \frac{{{z^2}}}{{1 + x}} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + 3}}\)
\( \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{{\left( {x + y + z} \right) + \left( {x + y + z} \right)}} = \frac{{x + y + z}}{2} \ge \frac{3}{2}\)
Dấu “=” xảy ra khi và chỉ khi x = y = z = 1.
Vậy \(\frac{{{x^2}}}{{\left( {1 + y} \right)}} + \frac{{{y^2}}}{{\left( {1 + z} \right)}} + \frac{{{z^2}}}{{\left( {1 + x} \right)}} \ge \frac{3}{2}\), dấu “=” xảy ra khi và chỉ khi x = y = z = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!