Câu hỏi:

19/08/2025 9,955 Lưu

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:

\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số đã cho xác định trên ℝ khi và chỉ khi x2 – 3mx + 4 ≥ 0, \(\forall \)x ℝ.

∆ = 9m2 – 16 ≤ 0

\( \Leftrightarrow {m^2} \le \frac{{16}}{9}\)

\( \Leftrightarrow \frac{{ - 4}}{3} \le m \le \frac{4}{3}\)

Vậy với \(\frac{{ - 4}}{3} \le m \le \frac{4}{3}\) thì thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.

Lời giải

Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia  (ảnh 1)

a) Xét \(\Delta ADE\)\(\Delta ABC\) có:

AD = AB

\(\widehat {DAE} = \widehat {BAC}\) (2 góc đối đỉnh)

AC = AE

\(\Delta ADE = \Delta BAC\left( {c.g.c} \right)\)

\(\widehat {ADE} = \widehat {ABC}\) (2 góc tương ứng) mà chúng ở vị trí so le trong với nhau

BC // DE (đpcm)

b) Xét \(\Delta DAM\)\(\Delta BAN\) có:

\(\widehat {DAM} = \widehat {BAN}\) (2 góc đối đỉnh)

AD = AB

\(\widehat {ABN} = \widehat {ADM}\) (CMT)

\(\Delta DAM = \Delta BAN\left( {g.c.g} \right)\)

AM = AN (2 cạnh tương ứng) (dpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP