Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Quảng cáo
Trả lời:

Lời giải
a) Ta có OA = OB và AC = BD.
Suy ra OA + AC = OB + BD.
Do đó OC = OD.
Xét ∆OAD và ∆OBC, có:
\(\widehat {AOD}\) là góc chung;
OA = OB (giả thiết);
OD = OC (chứng minh trên).
Do đó ∆OAD = ∆OBC (c.g.c).
Vậy AD = BC (cặp cạnh tương ứng).
b) Ta có \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) và \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) (các cặp góc kề bù).
Mà \(\widehat {{A_1}} = \widehat {{B_1}}\) (do ∆OAD = ∆OBC).
Suy ra \(\widehat {{A_2}} = \widehat {{B_2}}\).
Xét ∆EAC và ∆EBD, có:
AC = BD (giả thiết);
\(\widehat {{A_2}} = \widehat {{B_2}}\) (chứng minh trên);
\(\widehat {{C_1}} = \widehat {{D_1}}\) (do ∆OAD = ∆OBC).
Vậy ∆EAC = ∆EBD (g.c.g).
c) Xét ∆OED và ∆OEC, có:
OE là cạnh chung;
OD = OC (chứng minh trên);
ED = EC (do ∆EAC = ∆EBD).
Do đó ∆OED = ∆OEC (c.c.c).
Suy ra \(\widehat {{O_1}} = \widehat {{O_2}}\) (cặp góc tương ứng).
Vậy OE là phân giác của \(\widehat {xOy}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.