Câu hỏi:

04/07/2023 16,760

Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–2; 3), C(3; 1). Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi A(x; y).

Suy ra \(\overrightarrow {AB} = \left( { - 2 - x;3 - y} \right),\,\overrightarrow {AC} = \left( {3 - x;1 - y} \right)\)

Tam giác ABC vuông cân tại A.

\[ \Rightarrow \left\{ \begin{array}{l}AB \bot AC\\AB = AC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}\left( { - 2 - x} \right)\left( {3 - x} \right) + \left( {3 - y} \right)\left( {1 - y} \right) = 0\\{\left( { - 2 - x} \right)^2} + {\left( {3 - y} \right)^2} = {\left( {3 - x} \right)^2} + {\left( {1 - y} \right)^2}\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l} - x + {x^2} - 3 - 4y + {y^2} = 0\,\,\,\,\,\left( 1 \right)\\\frac{{10x + 3}}{4} = y\end{array} \right.\]

Thế \[\frac{{10x + 3}}{4} = y\] vào (1), ta được: \[ - x + {x^2} - 3 - 10x - 3 + {\left( {\frac{{10x + 3}}{4}} \right)^2} = 0\].

116x2 – 116x – 87 = 0.

\( \Leftrightarrow x = \frac{3}{2}\) hoặc \(x = - \frac{1}{2}\).

Với \(x = \frac{3}{2}\), ta có: \(y = \frac{9}{2}\). Suy ra tọa độ \(A\left( {\frac{3}{2};\frac{9}{2}} \right)\).

Với \(x = - \frac{1}{2}\), ta có: \(y = - \frac{1}{2}\). Suy ra tọa độ \(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\).

Vậy có hai điểm A thỏa mãn yêu cầu bài toán có tọa độ là \(A\left( {\frac{3}{2};\frac{9}{2}} \right)\)\(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Giả sử ta có tam giác vuông như hình vẽ.

Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.

Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.

Tóm lại:

Cạnh huyền là cạnh đối diện góc vuông.

Cạnh kề là cạnh góc vuông kề với góc đó.

Cạnh đối là cạnh góc vuông đối diện với góc đó.

Lời giải

Lời giải

Đáp án đúng là: D

Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)

m < 6.

Để A \ B = thì A B.

\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)

4 ≤ m < 403.

So với điều kiện m < 6, ta nhận 4 ≤ m < 6.

Mà m ℤ nên m {4; 5}.

Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án D.

Câu 3

Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.

Media VietJack

Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay