Cho hai tập hợp A = (m – 1; 5], B = (3; 2020 – 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ∅?
Quảng cáo
Trả lời:

Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Lời giải
Lời giải
Gọi A(x; y).
Suy ra \(\overrightarrow {AB} = \left( { - 2 - x;3 - y} \right),\,\overrightarrow {AC} = \left( {3 - x;1 - y} \right)\)
Tam giác ABC vuông cân tại A.
\[ \Rightarrow \left\{ \begin{array}{l}AB \bot AC\\AB = AC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}\left( { - 2 - x} \right)\left( {3 - x} \right) + \left( {3 - y} \right)\left( {1 - y} \right) = 0\\{\left( { - 2 - x} \right)^2} + {\left( {3 - y} \right)^2} = {\left( {3 - x} \right)^2} + {\left( {1 - y} \right)^2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l} - x + {x^2} - 3 - 4y + {y^2} = 0\,\,\,\,\,\left( 1 \right)\\\frac{{10x + 3}}{4} = y\end{array} \right.\]
Thế \[\frac{{10x + 3}}{4} = y\] vào (1), ta được: \[ - x + {x^2} - 3 - 10x - 3 + {\left( {\frac{{10x + 3}}{4}} \right)^2} = 0\].
⇔ 116x2 – 116x – 87 = 0.
\( \Leftrightarrow x = \frac{3}{2}\) hoặc \(x = - \frac{1}{2}\).
Với \(x = \frac{3}{2}\), ta có: \(y = \frac{9}{2}\). Suy ra tọa độ \(A\left( {\frac{3}{2};\frac{9}{2}} \right)\).
Với \(x = - \frac{1}{2}\), ta có: \(y = - \frac{1}{2}\). Suy ra tọa độ \(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\).
Vậy có hai điểm A thỏa mãn yêu cầu bài toán có tọa độ là \(A\left( {\frac{3}{2};\frac{9}{2}} \right)\) và \(A\left( { - \frac{1}{2}; - \frac{1}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.