Câu hỏi:

05/07/2023 1,080

Biết rằng \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}},\,\,\,\,\,\,x \ne \pi \\m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \pi \end{array} \right.\) liên tục tại x = π.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Hàm số đã cho xác định với mọi x ℝ.

Điều kiện của bài toán trở thành:

\(m = f\left( \pi \right) = \mathop {\lim }\limits_{x \to \pi } f\left( x \right) = \mathop {\lim }\limits_{x \to \pi } \frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}}\).

\( = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\cos }^2}\frac{x}{2}}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{{{\left( {x - \pi } \right)}^2}}} = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{4}.2{{\sin }^2}\left( {\frac{x}{2} - \frac{\pi }{2}} \right)}}{{\frac{1}{4}.{{\left( {x - \pi } \right)}^2}}}\)

\( = \mathop {\lim }\limits_{x \to \pi } \frac{{\frac{1}{2}{{\sin }^2}\left( {\frac{{x - \pi }}{2}} \right)}}{{{{\left( {\frac{{x - \pi }}{2}} \right)}^2}}} = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left[ {\frac{{\sin \left( {\frac{{x - \pi }}{2}} \right)}}{{\left( {\frac{{x - \pi }}{2}} \right)}}} \right]^2}\) (*)

Đặt \(t = \frac{{x - \pi }}{2} \to 0\) khi x π.

Khi đó (*) trở thành: \(m = \frac{1}{2}\mathop {\lim }\limits_{x \to \pi } {\left( {\frac{{\sin t}}{t}} \right)^2} = \frac{1}{2}{.1^2} = \frac{1}{2}\).

Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).

Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) (m + 1; +∞).

m + 1 ≤ 4 m ≤ 3.

Mà m là số nguyên dương.

Suy ra m {1; 2; 3}.

Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

Lời giải

Lời giải

Gọi x là số ha đất trồng ngô, y là số ha đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với x, y như sau:

Hiển nhiên x ≥ 0, y ≥ 0.

Diện tích canh tác không vượt quá 8 ha nên ta có x + y ≤ 8.

Số ngày công sử dụng không vượt quá 180 ngày nên 20x + 30y ≤ 180.

2x + 3y ≤ 18.

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc là:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\,\,\left( * \right)\).

Yêu cầu bài toán Tìm (x; y) thỏa (*) để F(x; y) = 40x + 50y đạt giá trị lớn nhất.

Vẽ và xác định miền nghiệm của (*):

Media VietJack

Ta có:

Miền nghiệm của (*) là tứ giác OABC (kể cả biên).

O(0; 0), A(0; 6), B(6; 2), C(8; 0).

F(O) = 0, F(A) = 300, F(B) = 340, F(C) = 320.

Suy ra maxF(x; y) = F(B) = 340 khi và chỉ khi x = 6, y = 2.

Vậy để thu được nhiều tiền nhất thì bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP