Câu hỏi:

05/07/2023 5,221

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140 kg chất A và 9 kg chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20 kg chất A và 0,6 kg chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10 kg chất A và 1,5 kg chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi x là số tấn nguyên liệu loại I, y là số tấn nguyên liệu loại II cần dùng.

Vì cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên ta có \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\end{array} \right.\).

Theo đề, ta có từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20 kg chất A và 0,6 kg chất B.

Từ x tấn nguyên liệu loại I, có thể chiết xuất được 20x kg chất A và 0,6x kg chất B.

Theo đề, ta có từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10 kg chất A và 1,5 kg chất B.

Từ y tấn nguyên liệu loại II, có thể chiết xuất được 10y kg chất A và 1,5y kg chất B.

Như vậy ta chiết xuất được 20x + 10y (kg) chất A và 0,6x + 1,5y (kg) chất B.

Khi đó ta có hệ điều kiện là:

\(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\20x + 10y \ge 140\\0,6x + 1,5y \ge 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\\2x + y \ge 14\\2x + 5y \ge 30\end{array} \right.\,\,\,\,\,\left( * \right)\)

Yêu cầu bài toán Tìm (x; y) thỏa (*) để F(x; y) = 4x + 3y đạt giá trị nhỏ nhất.

Vẽ và xác định miền nghiệm của (*):

Media VietJack

Ta có:

Miền nghiệm của (*) là tứ giác ABCD (kể cả biên).

\(A\left( {\frac{5}{2};9} \right),\,B\left( {10;9} \right),\,C\left( {10;2} \right),\,D\left( {5;4} \right)\).

F(A) = 37, F(B) = 67, F(C) = 46, F(D) = 32.

Suy ra minF(x; y) = F(D) = 32 khi và chỉ khi x = 5, y = 4.

Vậy để chi phí mua nguyên liệu là ít nhất thì cần mua 5 tấn nguyên liệu loại I và 4 tấn nguyên liệu loại II.

Do đó ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = x2 – 2(m + 1)x – 3 đồng biến trên khoảng (4; 2018)?

Xem đáp án » 13/07/2024 88,928

Câu 2:

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 ha. Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1 ha đậu xanh thì cần 30 ngày công và thu được 50 triệu đồng. Bác Năm cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, bác Năm chỉ có thể sử dụng không quá 180 ngày công cho việc trồng ngô và đậu xanh.

Xem đáp án » 13/07/2024 49,965

Câu 3:

Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:

a) Giỏi cả ba môn.

b) Giỏi đúng 1 môn.

Xem đáp án » 13/07/2024 35,338

Câu 4:

Ngoặc vuông và ngoặc tròn trong toán học.

Xem đáp án » 13/07/2024 17,483

Câu 5:

Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD sao cho KB = 2KD.

a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.

b) Tính diện tích thiết diện đó.

Xem đáp án » 13/07/2024 16,166

Câu 6:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem đáp án » 13/07/2024 16,164

Câu 7:

Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.

a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).

b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).

Xem đáp án » 12/07/2024 16,014
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua