Câu hỏi:

12/07/2024 2,270 Lưu

Trong lớp 10B có 45 học sinh, 25 học sinh thích môn Văn, 20 học sinh thích môn Toán, 18 học sinh thích môn Sử, 6 học sinh không thích môn nào, 5 học sinh thích cả 3 môn. Hỏi số học sinh chỉ thích một trong 3 môn trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi x, y, z lần lượt là số học sinh thích một môn, hai môn và ba môn.

Lập sơ đồ Ven liên hệ giữa các tập hợp, ta có hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z = 45 - 6\\x + 2y + 3z = 25 + 20 + 18\\z = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 20\\y = 14\\z = 5\end{array} \right.\).

Vậy số học sinh chỉ thích một trong 3 môn trên là 20 học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).

Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) (m + 1; +∞).

m + 1 ≤ 4 m ≤ 3.

Mà m là số nguyên dương.

Suy ra m {1; 2; 3}.

Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

Lời giải

Lời giải

Gọi x là số ha đất trồng ngô, y là số ha đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với x, y như sau:

Hiển nhiên x ≥ 0, y ≥ 0.

Diện tích canh tác không vượt quá 8 ha nên ta có x + y ≤ 8.

Số ngày công sử dụng không vượt quá 180 ngày nên 20x + 30y ≤ 180.

2x + 3y ≤ 18.

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc là:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\,\,\left( * \right)\).

Yêu cầu bài toán Tìm (x; y) thỏa (*) để F(x; y) = 40x + 50y đạt giá trị lớn nhất.

Vẽ và xác định miền nghiệm của (*):

Media VietJack

Ta có:

Miền nghiệm của (*) là tứ giác OABC (kể cả biên).

O(0; 0), A(0; 6), B(6; 2), C(8; 0).

F(O) = 0, F(A) = 300, F(B) = 340, F(C) = 320.

Suy ra maxF(x; y) = F(B) = 340 khi và chỉ khi x = 6, y = 2.

Vậy để thu được nhiều tiền nhất thì bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP