Câu hỏi:
05/07/2023 1,285Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.
a) Chứng minh: AH.BC = AB.AC.
b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng: MA2 = MB.MC.
c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM // EF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\widehat {BAC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).
Tam giác ABC vuông tại A có AH là đường cao: AH.BC = AB.AC (Hệ thức lượng trong tam giác vuông).
Vậy ta có điều phải chứng minh.
b) Xét ∆MAB và ∆MCA, có:
\(\widehat {AMB}\) chung;
\(\widehat {MAB} = \widehat {MCA}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).
Do đó (g.g).
Suy ra \(\frac{{MA}}{{MC}} = \frac{{MB}}{{MA}}\).
Vậy MA2 = MB.MC (điều phải chứng minh).
c) Tam giác ABH vuông tại H có HE là đường cao:
AH2 = AE.AB (Hệ thức lượng trong tam giác vuông).
Chứng minh tương tự, ta được AH2 = AF.AC.
Khi đó ta có AE.AB = AF.AC.
Xét ∆AEF và ∆ACB, có:
\(\widehat {FAE}\) chung;
\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (AE.AB = AF.AC).
Do đó (g.g).
Suy ra \(\widehat {AFE} = \widehat {ABC}\) (cặp góc tương ứng) (1)
Ta có tam giác AOC cân tại O (do OA = OC = R).
Suy ra \(\widehat {OAC} = \widehat {OCA}\) (2)
Lại có \(\widehat {OCA} + \widehat {ABC} = 90^\circ \) (3)
Từ (1), (2), (3), suy ra \(\widehat {OAC} + \widehat {AFE} = 90^\circ \).
Khi đó AO ⊥ EF.
Mà AM ⊥ AO (do AM là tiếp tuyến của (O)).
Vậy AM // EF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:
a) Giỏi cả ba môn.
b) Giỏi đúng 1 môn.
Câu 4:
Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.
a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).
b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).
Câu 5:
Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD sao cho KB = 2KD.
a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.
b) Tính diện tích thiết diện đó.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!