Câu hỏi:

05/07/2023 1,110

Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.

a) Chứng minh: AH.BC = AB.AC.

b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng: MA2 = MB.MC.

c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM // EF.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có \(\widehat {BAC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).

Tam giác ABC vuông tại A có AH là đường cao: AH.BC = AB.AC (Hệ thức lượng trong tam giác vuông).

Vậy ta có điều phải chứng minh.

b) Xét ∆MAB và ∆MCA, có:

\(\widehat {AMB}\) chung;

\(\widehat {MAB} = \widehat {MCA}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).

Do đó  (g.g).

Suy ra \(\frac{{MA}}{{MC}} = \frac{{MB}}{{MA}}\).

Vậy MA2 = MB.MC (điều phải chứng minh).

c) Tam giác ABH vuông tại H có HE là đường cao:

AH2 = AE.AB (Hệ thức lượng trong tam giác vuông).

Chứng minh tương tự, ta được AH2 = AF.AC.

Khi đó ta có AE.AB = AF.AC.

Xét ∆AEF và ∆ACB, có:

\(\widehat {FAE}\) chung;

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (AE.AB = AF.AC).

Do đó  (g.g).

Suy ra \(\widehat {AFE} = \widehat {ABC}\) (cặp góc tương ứng)     (1)

Ta có tam giác AOC cân tại O (do OA = OC = R).

Suy ra \(\widehat {OAC} = \widehat {OCA}\)      (2)

Lại có \(\widehat {OCA} + \widehat {ABC} = 90^\circ \)      (3)

Từ (1), (2), (3), suy ra \(\widehat {OAC} + \widehat {AFE} = 90^\circ \).

Khi đó AO EF.

Mà AM AO (do AM là tiếp tuyến của (O)).

Vậy AM // EF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = x2 – 2(m + 1)x – 3 đồng biến trên khoảng (4; 2018)?

Xem đáp án » 13/07/2024 69,921

Câu 2:

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 ha. Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1 ha đậu xanh thì cần 30 ngày công và thu được 50 triệu đồng. Bác Năm cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, bác Năm chỉ có thể sử dụng không quá 180 ngày công cho việc trồng ngô và đậu xanh.

Xem đáp án » 13/07/2024 34,702

Câu 3:

Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:

a) Giỏi cả ba môn.

b) Giỏi đúng 1 môn.

Xem đáp án » 13/07/2024 30,931

Câu 4:

Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD sao cho KB = 2KD.

a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.

b) Tính diện tích thiết diện đó.

Xem đáp án » 13/07/2024 10,174

Câu 5:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem đáp án » 13/07/2024 8,132

Câu 6:

Ngoặc vuông và ngoặc tròn trong toán học.

Xem đáp án » 13/07/2024 7,359

Câu 7:

Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.

a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).

b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).

Xem đáp án » 12/07/2024 6,099

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store