Câu hỏi:

05/07/2023 1,426

Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.

a) Chứng minh: AH.BC = AB.AC.

b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng: MA2 = MB.MC.

c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM // EF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có \(\widehat {BAC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).

Tam giác ABC vuông tại A có AH là đường cao: AH.BC = AB.AC (Hệ thức lượng trong tam giác vuông).

Vậy ta có điều phải chứng minh.

b) Xét ∆MAB và ∆MCA, có:

\(\widehat {AMB}\) chung;

\(\widehat {MAB} = \widehat {MCA}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).

Do đó  (g.g).

Suy ra \(\frac{{MA}}{{MC}} = \frac{{MB}}{{MA}}\).

Vậy MA2 = MB.MC (điều phải chứng minh).

c) Tam giác ABH vuông tại H có HE là đường cao:

AH2 = AE.AB (Hệ thức lượng trong tam giác vuông).

Chứng minh tương tự, ta được AH2 = AF.AC.

Khi đó ta có AE.AB = AF.AC.

Xét ∆AEF và ∆ACB, có:

\(\widehat {FAE}\) chung;

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (AE.AB = AF.AC).

Do đó  (g.g).

Suy ra \(\widehat {AFE} = \widehat {ABC}\) (cặp góc tương ứng)     (1)

Ta có tam giác AOC cân tại O (do OA = OC = R).

Suy ra \(\widehat {OAC} = \widehat {OCA}\)      (2)

Lại có \(\widehat {OCA} + \widehat {ABC} = 90^\circ \)      (3)

Từ (1), (2), (3), suy ra \(\widehat {OAC} + \widehat {AFE} = 90^\circ \).

Khi đó AO EF.

Mà AM AO (do AM là tiếp tuyến của (O)).

Vậy AM // EF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).

Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) (m + 1; +∞).

m + 1 ≤ 4 m ≤ 3.

Mà m là số nguyên dương.

Suy ra m {1; 2; 3}.

Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

Lời giải

Lời giải

Gọi x là số ha đất trồng ngô, y là số ha đất trồng đậu xanh.

Ta có các điều kiện ràng buộc đối với x, y như sau:

Hiển nhiên x ≥ 0, y ≥ 0.

Diện tích canh tác không vượt quá 8 ha nên ta có x + y ≤ 8.

Số ngày công sử dụng không vượt quá 180 ngày nên 20x + 30y ≤ 180.

2x + 3y ≤ 18.

Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc là:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\2x + 3y \le 18\end{array} \right.\,\,\left( * \right)\).

Yêu cầu bài toán Tìm (x; y) thỏa (*) để F(x; y) = 40x + 50y đạt giá trị lớn nhất.

Vẽ và xác định miền nghiệm của (*):

Media VietJack

Ta có:

Miền nghiệm của (*) là tứ giác OABC (kể cả biên).

O(0; 0), A(0; 6), B(6; 2), C(8; 0).

F(O) = 0, F(A) = 300, F(B) = 340, F(C) = 320.

Suy ra maxF(x; y) = F(B) = 340 khi và chỉ khi x = 6, y = 2.

Vậy để thu được nhiều tiền nhất thì bác Năm cần trồng 6 ha ngô và 2 ha đậu xanh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP