Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
Quảng cáo
Trả lời:

Lời giải:
a) Ta có:
\(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\)\( = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \cos \frac{\pi }{{15}}\sin \frac{\pi }{{10}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\)
\( = \frac{{\sin \left( {\frac{\pi }{{15}} + \frac{\pi }{{10}}} \right)}}{{\cos \left( {\frac{{2\pi }}{{15}} + \frac{\pi }{5}} \right)}}\)\( = \frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{3}}} = \frac{{\frac{1}{2}}}{{\frac{1}{2}}} = 1\).
b) Ta có:
\(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\)\( = \left( {\frac{1}{2}.2\sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}} \right)\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\)
\( = \frac{1}{2}\sin \left( {2.\frac{\pi }{{32}}} \right)\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\)\( = \frac{1}{2}\sin \frac{\pi }{{16}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\)
\( = \frac{1}{4}.2\sin \frac{\pi }{{16}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\)\( = \frac{1}{4}\sin \frac{\pi }{8}\cos \frac{\pi }{8} = \frac{1}{8}.2\sin \frac{\pi }{8}\cos \frac{\pi }{8}\)
\( = \frac{1}{8}\sin \frac{\pi }{4} = \frac{1}{8}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{{16}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì \(\frac{\pi }{2} < a < \pi \) nên cos a < 0.
Mặt khác, từ sin2 a + cos2 a = 1 suy ra
cos a = \( - \sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = - \frac{{2\sqrt 2 }}{3}\).
Ta có: sin 2a = 2sin a cos a = \(2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\).
\(\cos 2a = 1 - 2{\sin ^2}a = 1 - 2.{\left( {\frac{1}{3}} \right)^2} = \frac{7}{9}\).
\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{{4\sqrt 2 }}{9}}}{{\frac{7}{9}}} = - \frac{{4\sqrt 2 }}{7}\).
b) Ta có: (sin a + cos a)2 = \({\left( {\frac{1}{2}} \right)^2}\)\( \Leftrightarrow {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = \frac{1}{4}\)
\( \Leftrightarrow 1 + \sin 2a = \frac{1}{4} \Leftrightarrow \sin 2a = - \frac{3}{4}\).
Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\pi < 2a < \frac{{3\pi }}{2}\), do đó cos 2a < 0. Mặt khác từ sin2 (2a) + cos2 (2a) = 1
Suy ra \(\cos 2a = - \sqrt {1 - {{\sin }^2}\left( {2a} \right)} = - \sqrt {1 - {{\left( { - \frac{3}{4}} \right)}^2}} = - \frac{{\sqrt 7 }}{4}\).
Do đó, \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{3}{{\sqrt 7 }} = \frac{{3\sqrt 7 }}{7}\).Lời giải
Lời giải:
Dao động tổng hợp x(t) = x1(t) + x2(t)
Suy ra x(t) = \(2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Ta có: \(2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\)
\( = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)
\( = 2.2\cos \frac{{\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)}}{2}\cos \frac{{\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) - \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)}}{2}\)
\( = 4\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4}\)\( = 4\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\frac{{\sqrt 2 }}{2} = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\).
Vậy dạo động tổng hợp có phương trình là \(x\left( t \right) = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\) với biên độ \(A = 2\sqrt 2 \) và pha ban đầu là \(\varphi = - \frac{\pi }{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.