Giải SGK Toán 11 KNTT Bài 2. Công thức lượng giác có đáp án
39 người thi tuần này 4.6 2.3 K lượt thi 18 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Lời giải:
Sau bài học này ta sẽ giải quyết được bài toán trên như sau:
Ta có: f(t) = f1(t) + f2(t) = 5sin t + 5 cos t = 5(sin t + cos t)
Theo Ví dụ 2 trang 18 SGK Toán lớp 11 Tập 1, ta chứng minh được
sin t + cos t = \(\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\).
Do đó, \(f\left( t \right) = 5\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\).
Vậy âm kết hợp viết được dưới dạng f(t) = ksin (t + φ), trong đó biên độ âm \(k = 5\sqrt 2 \) và pha ban đầu của sóng âm là\(\,\varphi = \frac{\pi }{4}\).
Lời giải
Lời giải:
a) Ta có: a – b = \(\frac{\pi }{3} - \frac{\pi }{6} = \frac{\pi }{6}\) nên cos(a – b) = \(\cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\).
cos a cos b + sin a sin b
= \(\cos \frac{\pi }{3}\cos \frac{\pi }{6} + \sin \frac{\pi }{3}\sin \frac{\pi }{6} = \frac{1}{2} \cdot \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2} \cdot \frac{1}{2}\)
\( = \frac{{\sqrt 3 }}{4} + \frac{{\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2}\).
Vậy với \(a = \frac{\pi }{3}\) và \(b = \frac{\pi }{6}\), ta thấy cos(a – b) = cos a cos b + sin a sin b.
b) Ta có: cos(a + b) = cos[a – (– b)] = cos a cos(– b) + sin a sin(– b)
Mà cos(– b) = cos b, sin(– b) = – sin b (hai góc đối nhau).
Do đó, cos(a + b) = cos a cos b + sin a . (– sin b) = cos a cos b – sin a sin b.
c) Ta có: sin(a – b) = \(\cos \left[ {\frac{\pi }{2} - \left( {a - b} \right)} \right] = \cos \left[ {\left( {\frac{\pi }{2} - a} \right) + b} \right]\)
\( = \cos \left( {\frac{\pi }{2} - a} \right)\cos b - \sin \left( {\frac{\pi }{2} - a} \right)\sin b\)
\( = \sin a\cos b - \cos a\sin b\) (do \(\cos \left( {\frac{\pi }{2} - a} \right) = \sin a\), \(\sin \left( {\frac{\pi }{2} - a} \right) = \cos a\)).
Vậy sin(a – b) = sin a cos b – cos a sin b.
Lời giải
Lời giải:
a) Ta có: \(VP = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} - \cos x\sin \frac{\pi }{4}} \right)\)
\( = \sqrt 2 \sin x.\frac{{\sqrt 2 }}{2} - \sqrt 2 \cos x.\frac{{\sqrt 2 }}{2} = \sin x - \cos x = VT\) (đpcm).
b) Ta có: \(VT = \tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}} = VP\) \(\left( {do\,\,\tan \frac{\pi }{4} = 1} \right)\).
Lời giải
Lời giải:
Ta có: f(t) = f1(t) + f2(t) = 5sin t + 5 cos t = 5(sin t + cos t)
Theo Ví dụ 2 trang 18 SGK Toán lớp 11 Tập 1, ta chứng minh được
sin t + cos t = \(\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\).
Do đó, \(f\left( t \right) = 5\sqrt 2 \sin \left( {t + \frac{\pi }{4}} \right)\).
Vậy âm kết hợp viết được dưới dạng f(t) = ksin (t + φ), trong đó biên độ âm \(k = 5\sqrt 2 \) và pha ban đầu của sóng âm là\(\,\varphi = \frac{\pi }{4}\).
Lời giải
Lời giải:
Ta có:
+) sin 2a = sin(a + a) = sin a cos a + cos a sin a = sin a cos a + sin a cos a = 2 sin a cos a.
+) cos 2a = cos (a + a) = cos a cos a – sin a sin a = cos2 a – sin2 a
Mà sin2 a + cos2 a = 1, suy ra sin2 a = 1 – cos2 a và cos2 a = 1 – sin2 a.
Do đó, cos 2a = cos2 a – sin2 a = 2cos2 a – 1 = 1 – 2sin2 a.
+) tan 2a = tan (a + a) = \(\frac{{\tan a + \tan a}}{{1 - \tan a\tan a}} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
