Câu hỏi:

13/07/2024 2,060

Xây dựng công thức biến đổi tích thành tổng

a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.

b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Ta có: cos(a + b) = cos a cos b – sin a sin b (1);

cos(a – b) = cos a cos b + sin a sin b   (2).

Lấy (1) và (2) cộng vế theo vế, ta được: cos(a + b) + cos(a – b) = 2cos a cos b.

Từ đó suy ra, cos a cos b = \(\frac{1}{2}\)[cos(a + b) + cos(a – b)].

Lấy (2) trừ vế theo vế cho (1), ta được: cos(a – b) – cos(a + b) = 2sin a sin b.

Từ đó suy ra, sin a sin b = \(\frac{1}{2}\)[cos(a – b) – cos(a + b)].

b) Ta có: sin(a + b) = sin a cos b + cos a sin b (3);

sin(a – b) = sin a cos b – cos a sin b   (4).

Lấy (3) và (4) cộng vế theo vế, ta được: sin(a + b) + sin(a – b) = 2sin a cos b.

Từ đó suy ra, sin a cos b = \(\frac{1}{2}\)[sin(a + b) + sin(a – b)].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính sin 2a, cos 2a, tan 2a, biết:

a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);

b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).

Xem đáp án » 13/07/2024 45,792

Câu 2:

Tính:

a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);

b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).

Xem đáp án » 13/07/2024 41,049

Câu 3:

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ [–π; π] là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),

\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).

Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

Xem đáp án » 13/07/2024 34,464

Câu 4:

Chứng minh đẳng thức sau:

sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.

Xem đáp án » 13/07/2024 30,539

Câu 5:

Chứng minh rằng:

a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);

b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 30,438

Câu 6:

Tính giá trị của các biểu thức sau:

a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);

b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).

Xem đáp án » 13/07/2024 24,537

Câu 7:

Không dùng máy tính, tính \(\cos \frac{\pi }{8}\).

Xem đáp án » 13/07/2024 13,297

Bình luận


Bình luận