Xây dựng công thức biến đổi tích thành tổng
a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.
b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.
Xây dựng công thức biến đổi tích thành tổng
a) Từ các công thức cộng cos(a + b) và cos(a – b), hãy tìm: cos a cos b; sin a sin b.
b) Từ các công thức cộng sin(a + b) và sin(a – b), hãy tìm: sin a cos b.
Quảng cáo
Trả lời:

Lời giải:
a) Ta có: cos(a + b) = cos a cos b – sin a sin b (1);
cos(a – b) = cos a cos b + sin a sin b (2).
Lấy (1) và (2) cộng vế theo vế, ta được: cos(a + b) + cos(a – b) = 2cos a cos b.
Từ đó suy ra, cos a cos b = \(\frac{1}{2}\)[cos(a + b) + cos(a – b)].
Lấy (2) trừ vế theo vế cho (1), ta được: cos(a – b) – cos(a + b) = 2sin a sin b.
Từ đó suy ra, sin a sin b = \(\frac{1}{2}\)[cos(a – b) – cos(a + b)].
b) Ta có: sin(a + b) = sin a cos b + cos a sin b (3);
sin(a – b) = sin a cos b – cos a sin b (4).
Lấy (3) và (4) cộng vế theo vế, ta được: sin(a + b) + sin(a – b) = 2sin a cos b.
Từ đó suy ra, sin a cos b = \(\frac{1}{2}\)[sin(a + b) + sin(a – b)].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì \(\frac{\pi }{2} < a < \pi \) nên cos a < 0.
Mặt khác, từ sin2 a + cos2 a = 1 suy ra
cos a = \( - \sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = - \frac{{2\sqrt 2 }}{3}\).
Ta có: sin 2a = 2sin a cos a = \(2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\).
\(\cos 2a = 1 - 2{\sin ^2}a = 1 - 2.{\left( {\frac{1}{3}} \right)^2} = \frac{7}{9}\).
\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{{4\sqrt 2 }}{9}}}{{\frac{7}{9}}} = - \frac{{4\sqrt 2 }}{7}\).
b) Ta có: (sin a + cos a)2 = \({\left( {\frac{1}{2}} \right)^2}\)\( \Leftrightarrow {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = \frac{1}{4}\)
\( \Leftrightarrow 1 + \sin 2a = \frac{1}{4} \Leftrightarrow \sin 2a = - \frac{3}{4}\).
Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\pi < 2a < \frac{{3\pi }}{2}\), do đó cos 2a < 0. Mặt khác từ sin2 (2a) + cos2 (2a) = 1
Suy ra \(\cos 2a = - \sqrt {1 - {{\sin }^2}\left( {2a} \right)} = - \sqrt {1 - {{\left( { - \frac{3}{4}} \right)}^2}} = - \frac{{\sqrt 7 }}{4}\).
Do đó, \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{3}{{\sqrt 7 }} = \frac{{3\sqrt 7 }}{7}\).Lời giải
Lời giải:
Dao động tổng hợp x(t) = x1(t) + x2(t)
Suy ra x(t) = \(2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Ta có: \(2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\)
\( = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)
\( = 2.2\cos \frac{{\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)}}{2}\cos \frac{{\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) - \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)}}{2}\)
\( = 4\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4}\)\( = 4\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\frac{{\sqrt 2 }}{2} = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\).
Vậy dạo động tổng hợp có phương trình là \(x\left( t \right) = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\) với biên độ \(A = 2\sqrt 2 \) và pha ban đầu là \(\varphi = - \frac{\pi }{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.