Câu hỏi:
13/07/2024 7,791Cho tam giác ABC có \(\widehat B = 75^\circ \); \(\widehat C = 45^\circ \) và a = BC = 12 cm.
a) Sử dụng công thức \(S = \frac{1}{2}ab\sin C\) và định lí sin, hãy chứng minh diện tích của tam giác ABC cho bởi công thức
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\).
b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Định lí sin trong tam giác ABC với BC = a, AC = b và AB = c là: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Từ đó suy ra \(b = \frac{{a\sin B}}{{\sin A}}\).
Diện tích tam giác ABC là \(S = \frac{1}{2}ab\sin C\)\( = \frac{1}{2}a.\frac{{a\sin B}}{{\sin A}}.\sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\).
Vậy \(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm).
b) Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong tam giác ABC).
\( \Rightarrow \widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {75^\circ + 45^\circ } \right) = 60^\circ \).
Ta có: \(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}\sin 75^\circ \sin 45^\circ }}{{2\sin 60^\circ }}\)
\( = \frac{{144.\frac{1}{2}\left[ {\cos \left( {75^\circ - 45^\circ } \right) - \cos \left( {75^\circ + 45^\circ } \right)} \right]}}{{2.\frac{{\sqrt 3 }}{2}}}\)
\( = \frac{{72\left( {\cos 30^\circ - \cos 120^\circ } \right)}}{{\sqrt 3 }}\)\( = \frac{{72\left( {\frac{{\sqrt 3 }}{2} - \left( { - \frac{1}{2}} \right)} \right)}}{{\sqrt 3 }} = 36 + 12\sqrt 3 \).
Vậy diện tích của tam giác ABC là \(S = 36 + 12\sqrt 3 \) (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính sin 2a, cos 2a, tan 2a, biết:
a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);
b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).
Câu 2:
Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
Câu 3:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ ∈ [–π; π] là pha ban đầu của dao động.
Xét hai dao động điều hòa có phương trình:
\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),
\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.
Câu 4:
Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Câu 5:
Chứng minh rằng:
a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).
Câu 6:
Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
về câu hỏi!