Câu hỏi:
13/07/2024 8,256Cho tam giác ABC có \(\widehat B = 75^\circ \); \(\widehat C = 45^\circ \) và a = BC = 12 cm.
a) Sử dụng công thức \(S = \frac{1}{2}ab\sin C\) và định lí sin, hãy chứng minh diện tích của tam giác ABC cho bởi công thức
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\).
b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) Định lí sin trong tam giác ABC với BC = a, AC = b và AB = c là: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Từ đó suy ra \(b = \frac{{a\sin B}}{{\sin A}}\).
Diện tích tam giác ABC là \(S = \frac{1}{2}ab\sin C\)\( = \frac{1}{2}a.\frac{{a\sin B}}{{\sin A}}.\sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\).
Vậy \(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm).
b) Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong tam giác ABC).
\( \Rightarrow \widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {75^\circ + 45^\circ } \right) = 60^\circ \).
Ta có: \(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}\sin 75^\circ \sin 45^\circ }}{{2\sin 60^\circ }}\)
\( = \frac{{144.\frac{1}{2}\left[ {\cos \left( {75^\circ - 45^\circ } \right) - \cos \left( {75^\circ + 45^\circ } \right)} \right]}}{{2.\frac{{\sqrt 3 }}{2}}}\)
\( = \frac{{72\left( {\cos 30^\circ - \cos 120^\circ } \right)}}{{\sqrt 3 }}\)\( = \frac{{72\left( {\frac{{\sqrt 3 }}{2} - \left( { - \frac{1}{2}} \right)} \right)}}{{\sqrt 3 }} = 36 + 12\sqrt 3 \).
Vậy diện tích của tam giác ABC là \(S = 36 + 12\sqrt 3 \) (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính sin 2a, cos 2a, tan 2a, biết:
a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);
b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).
Câu 2:
Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
Câu 3:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ ∈ [–π; π] là pha ban đầu của dao động.
Xét hai dao động điều hòa có phương trình:
\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),
\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.
Câu 4:
Chứng minh rằng:
a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).
Câu 5:
Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Câu 6:
Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!