Câu hỏi:
13/07/2024 4,520Khi nhấn một phím trên điện thoại cảm ứng, bàn phím sẽ tạo ra hai âm thuần, kết hợp với nhau để tạo ra âm thanh nhận dạng duy nhất phím. Hình 1.13 cho thấy tần số thấp f1 và tần số cao f2 liên quan đến mỗi phím. Nhấn một phím sẽ tạo ra sóng âm y = sin(2πf1t) + sin(2πf2t), ở đó t là biến thời gian (tính bằng giây).
a) Tìm hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4.
b) Biến đổi công thức vừa tìm được ở câu a về dạng tích của một hàm số sin và một hàm số côsin.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) Quan sát Hình 1.13, ta nhận thấy khi nhấn phím 4, âm thanh được tạo ra có tần số thấp f1 = 770 Hz và tần số cao f2 = 1 209 Hz.
Khi đó, hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4 là
y = sin(2π . 770t) + sin(2π . 1 209t) hay y = sin(1 540πt) + sin(2 418πt).
b) Ta có:
sin(1 540πt) + sin(2 418πt)
= \(2\sin \frac{{1\,540\pi t + 2\,418\pi t}}{2}\cos \frac{{1\,540\pi t - 2\,418\pi t}}{2}\)
= 2sin(1 979πt) cos(– 439πt)
= 2sin(1 979πt) cos(439πt).
Vậy ta có hàm số y = 2sin(1 979πt) cos(439πt).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính sin 2a, cos 2a, tan 2a, biết:
a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);
b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).
Câu 2:
Tính:
a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);
b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).
Câu 3:
Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ ∈ [–π; π] là pha ban đầu của dao động.
Xét hai dao động điều hòa có phương trình:
\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),
\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).
Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.
Câu 4:
Chứng minh rằng:
a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).
Câu 5:
Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Câu 6:
Tính giá trị của các biểu thức sau:
a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);
b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!