Câu hỏi:

13/07/2024 5,575

Khi nhấn một phím trên điện thoại cảm ứng, bàn phím sẽ tạo ra hai âm thuần, kết hợp với nhau để tạo ra âm thanh nhận dạng duy nhất phím. Hình 1.13 cho thấy tần số thấp f1 và tần số cao f2 liên quan đến mỗi phím. Nhấn một phím sẽ tạo ra sóng âm y = sin(2πf1t) + sin(2πf2t), ở đó t là biến thời gian (tính bằng giây).

a) Tìm hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4.

b) Biến đổi công thức vừa tìm được ở câu a về dạng tích của một hàm số sin và một hàm số côsin.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Quan sát Hình 1.13, ta nhận thấy khi nhấn phím 4, âm thanh được tạo ra có tần số thấp f1 = 770 Hz và tần số cao f2 = 1 209 Hz.

Khi đó, hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4 là

y = sin(2π . 770t) + sin(2π . 1 209t) hay y = sin(1 540πt) + sin(2 418πt).

b) Ta có:

sin(1 540πt) + sin(2 418πt)

= \(2\sin \frac{{1\,540\pi t + 2\,418\pi t}}{2}\cos \frac{{1\,540\pi t - 2\,418\pi t}}{2}\)

= 2sin(1 979πt) cos(– 439πt)

= 2sin(1 979πt) cos(439πt).

Vậy ta có hàm số y = 2sin(1 979πt) cos(439πt).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Vì \(\frac{\pi }{2} < a < \pi \) nên cos a < 0.

Mặt khác, từ sin2 a + cos2 a = 1 suy ra

cos a = \( - \sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = - \frac{{2\sqrt 2 }}{3}\).

Ta có: sin 2a = 2sin a cos a = \(2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\).

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - 2.{\left( {\frac{1}{3}} \right)^2} = \frac{7}{9}\).

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{{4\sqrt 2 }}{9}}}{{\frac{7}{9}}} = - \frac{{4\sqrt 2 }}{7}\).  

b) Ta có: (sin a + cos a)2 = \({\left( {\frac{1}{2}} \right)^2}\)\( \Leftrightarrow {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = \frac{1}{4}\)

\( \Leftrightarrow 1 + \sin 2a = \frac{1}{4} \Leftrightarrow \sin 2a = - \frac{3}{4}\).

Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\pi < 2a < \frac{{3\pi }}{2}\), do đó cos 2a < 0. Mặt khác từ sin2 (2a) + cos2 (2a) = 1

Suy ra \(\cos 2a = - \sqrt {1 - {{\sin }^2}\left( {2a} \right)} = - \sqrt {1 - {{\left( { - \frac{3}{4}} \right)}^2}} = - \frac{{\sqrt 7 }}{4}\).

Do đó, \(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{3}{{\sqrt 7 }} = \frac{{3\sqrt 7 }}{7}\).

Lời giải

Lời giải:

a) Vì \(\frac{\pi }{2} < a < \pi \) nên cos a < 0.

Mặt khác, từ sin2 a + cos2 a = 1 suy ra

cos a = \( - \sqrt {1 - {{\sin }^2}a} = - \sqrt {1 - {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}} = - \frac{{\sqrt 6 }}{3}\).

Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right)\)\( = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6}\)

\( = \left( { - \frac{{\sqrt 6 }}{3}} \right).\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = \frac{{ - \sqrt 6 - 1}}{{2\sqrt 3 }} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\).

b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên sin a < 0, do đó \(\tan a = \frac{{\sin a}}{{\cos a}} > 0\).

Mặt khác từ \(1 + {\tan ^2}a = \frac{1}{{{{\cos }^2}a}}\)

Suy ra \(\tan a = \sqrt {\frac{1}{{{{\cos }^2}a}} - 1} = \sqrt {\frac{1}{{{{\left( { - \frac{1}{3}} \right)}^2}}} - 1} = 2\sqrt 2 \).

Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right)\)\( = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}}\)\( = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 .1}} = \frac{{9 - 4\sqrt 2 }}{7}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay