Câu hỏi:

13/07/2024 4,436

Khi nhấn một phím trên điện thoại cảm ứng, bàn phím sẽ tạo ra hai âm thuần, kết hợp với nhau để tạo ra âm thanh nhận dạng duy nhất phím. Hình 1.13 cho thấy tần số thấp f1 và tần số cao f2 liên quan đến mỗi phím. Nhấn một phím sẽ tạo ra sóng âm y = sin(2πf1t) + sin(2πf2t), ở đó t là biến thời gian (tính bằng giây).

a) Tìm hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4.

b) Biến đổi công thức vừa tìm được ở câu a về dạng tích của một hàm số sin và một hàm số côsin.

Media VietJack

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Quan sát Hình 1.13, ta nhận thấy khi nhấn phím 4, âm thanh được tạo ra có tần số thấp f1 = 770 Hz và tần số cao f2 = 1 209 Hz.

Khi đó, hàm số mô hình hóa âm thanh được tạo ra khi nhấn phím 4 là

y = sin(2π . 770t) + sin(2π . 1 209t) hay y = sin(1 540πt) + sin(2 418πt).

b) Ta có:

sin(1 540πt) + sin(2 418πt)

= \(2\sin \frac{{1\,540\pi t + 2\,418\pi t}}{2}\cos \frac{{1\,540\pi t - 2\,418\pi t}}{2}\)

= 2sin(1 979πt) cos(– 439πt)

= 2sin(1 979πt) cos(439πt).

Vậy ta có hàm số y = 2sin(1 979πt) cos(439πt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính sin 2a, cos 2a, tan 2a, biết:

a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);

b) sin a + cos a = \(\frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).

Xem đáp án » 13/07/2024 45,966

Câu 2:

Tính:

a) \(\cos \left( {a + \frac{\pi }{6}} \right)\), biết \(\sin a = \frac{1}{{\sqrt 3 }}\) và \(\frac{\pi }{2} < a < \pi \);

b) \(\tan \left( {a - \frac{\pi }{4}} \right)\), biết \(\cos a = - \frac{1}{3}\) và \(\pi < a < \frac{{3\pi }}{2}\).

Xem đáp án » 13/07/2024 41,169

Câu 3:

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ [–π; π] là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

\({x_1}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\) (cm),

\({x_2}\left( t \right) = 2\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\) (cm).

Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

Xem đáp án » 13/07/2024 34,540

Câu 4:

Chứng minh rằng:

a) sin x – cos x = \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);

b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\,\,\,\)\(\left( {x \ne \frac{\pi }{2} + k\pi ,\,\,x \ne \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}} \right)\).

Xem đáp án » 13/07/2024 30,640

Câu 5:

Chứng minh đẳng thức sau:

sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.

Xem đáp án » 13/07/2024 30,598

Câu 6:

Tính giá trị của các biểu thức sau:

a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}}\);

b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8}\).

Xem đáp án » 13/07/2024 24,566

Câu 7:

Không dùng máy tính, tính \(\cos \frac{\pi }{8}\).

Xem đáp án » 13/07/2024 13,333

Bình luận


Bình luận
Vietjack official store