Câu hỏi:
13/07/2024 52,711
Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu v0 = 500 m/s hợp với phương ngang một góc α. Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình \(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \), ở đó g = 9,8 m/s2 là gia tốc trọng trường.
a) Tính theo góc bắn α tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm chạm đất của quả đạn ).
b) Tìm góc bắn α để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m.
c) Tìm góc bắn α để quả đạn đạt độ cao lớn nhất.
Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu v0 = 500 m/s hợp với phương ngang một góc α. Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình \(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \), ở đó g = 9,8 m/s2 là gia tốc trọng trường.
a) Tính theo góc bắn α tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm chạm đất của quả đạn ).
b) Tìm góc bắn α để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m.
c) Tìm góc bắn α để quả đạn đạt độ cao lớn nhất.
Quảng cáo
Trả lời:
Lời giải:
Vì v0 = 500 m/s, g = 9,8 m/s2 nên ta có phương trình quỹ đạo của quả đạn là
\(y = \frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) hay \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \).
a) Quả đạn chạm đất khi y = 0, khi đó \(\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha = 0\)
\( \Leftrightarrow x\left( {\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}x + \tan \alpha } \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000{{\cos }^2}\alpha .\tan \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000\cos \alpha .\sin \alpha }}{{49}}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{1\,250\,000\sin 2\alpha }}{{49}}\end{array} \right.\)
Loại x = 0 (đạn pháo chưa được bắn).
Vậy tầm xa mà quả đạn đạt tới là \(x = \frac{{1250000\sin 2\alpha }}{{49}}\) (m).
b) Để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m thì x = 22 000 m.
Khi đó \(\frac{{1250000\sin 2\alpha }}{{49}} = 22\,000\)⇔ sin 2α = \(\frac{{539}}{{625}}\)
\[ \Leftrightarrow \left[ \begin{array}{l}\alpha \approx 29^\circ 47'36''\\\alpha \approx 60^\circ 12'23''\end{array} \right.\,\,\].
c) Hàm số \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) là một hàm số bậc hai có đồ thị là một parabol có tọa độ đỉnh I(xI; yI) là
\(\left\{ \begin{array}{l}{x_I} = - \frac{b}{{2a}} = - \frac{{\tan \alpha }}{{2.\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}}} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = f\left( {{x_I}} \right) = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{\left( {\frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}} \right)^2} + \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\tan \alpha \end{array} \right.\)
Hay \(\left\{ \begin{array}{l}{x_I} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}{{49}}\\{y_I} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\end{array} \right.\)
Do đó, độ cao lớn nhất của quả đạn là \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}}\).
Ta có \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}{{49}} \le \frac{{625\,000}}{{49}}\), dấu “=” xảy ra khi sin2 α = 1 hay α = 90°.
Như vậy góc bắn α = 90° thì quả đan đạt độ cao lớn nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\)
\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},\,\,k \in \mathbb{Z}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8}.
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Lời giải
Lời giải:
a) sin 2x + cos 4x = 0
⇔ cos 4x = – sin 2x
⇔ cos 4x = sin(– 2x)
⇔ cos 4x = cos\(\left( {\frac{\pi }{2} - \left( { - 2x} \right)} \right)\)
⇔ cos 4x = cos\(\left( {\frac{\pi }{2} + 2x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{2} + 2x + k2\pi \\4x = - \left( {\frac{\pi }{2} + 2x} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{{12}} + k\frac{\pi }{3}\end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có các nghiệm là \(x = \frac{\pi }{4} + k\pi ,\,k \in \mathbb{Z}\) và \(x = - \frac{\pi }{{12}} + k\frac{\pi }{3},k \in \mathbb{Z}\).
b) cos 3x = – cos 7x
⇔ cos 3x = cos(π + 7x)
\( \Leftrightarrow \left[ \begin{array}{l}3x = \pi + 7x + k2\pi \\3x = - \left( {\pi + 7x} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\frac{\pi }{2}\\x = - \frac{\pi }{{10}} + k\frac{\pi }{5}\end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có các nghiệm là \(x = - \frac{\pi }{4} + k\frac{\pi }{2},\,k \in \mathbb{Z}\) và \(x = - \frac{\pi }{{10}} + k\frac{\pi }{5},k \in \mathbb{Z}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.