Câu hỏi:

13/07/2024 675 Lưu

Một trường THCS có tất cả 4 lớp 7. Các em học sinh lớp 7 đã đăng kí tham gia một trong các câu lạc bộ bơi lội, cờ vua và cầu lông theo số liệu sau:

Lớp

Sĩ số

CLB Bơi Lội

CLB Cờ vua

CLB cầu lông

7A

42

14

12

10

7B

43

17

15

11

7C

40

11

13

9

7D

39

12

10

10

 

a) Có bao nhiêu phần trăm học sinh lớp 7 tham gia câu lạc bộ bơi lội?

b) Lớp 7A có bao nhiêu phần trăm học sinh tham gia tất cả các câu lạc bộ?

c) Ở môn cờ vua thì lớp nào có tỉ lệ tham gia đông nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tổng số học sinh của 44 lớp 77 là: 42 + 43 + 40 + 39 = 164 (học sinh)

Tổng số học sinh lớp 77 tham gia CLB bơi lội là: 14 + 17 + 11 + 12 = 54 (học sinh)

Tổng số học sinh lớp 77 tham gia CLB cờ vua là: 12 + 15 + 13 + 10 = 50 (học sinh)

Tổng số học sinh lớp 77 tham gia CLB cầu lông là: 10 + 11 + 9 + 10 = 40 (học sinh)

a) Phần trăm học sinh lớp 77 tham gia CLB bơi lội là:

\(\frac{{54}}{{164}}.100\% \approx 32,93\% \)

b) Số học sinh lớp 7A: 14 + 12 + 10 = 36 (học sinh)

Phần trăm số học sinh lớp 7A tham gia tất cả các CLB là:

\(\frac{{36}}{{164}}.100\% \approx 21,95\% \)

c) Vì 10 < 12 < 13 < 15

Nên số học sinh tham gia môn cờ vua của lớp 7B có tỉ lệ tham gia đông nhât.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với 3 loại quà khác loại ta chia được thành 3 nhóm tương ứng như sau:

Nhóm (1) gồm 1 áo và 1 sữa 

Nhóm (2) gồm 1 sữa và 1 cặp

Nhóm (3) gồm 1 cặp và 1 áo

Gọi x,y,z lần lượt là số học sinh nhận các suất quà thuộc nhóm (1); (2); (3) 

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z = 10\\x + z = 7\\x + y = 9\\y + z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 3\\z = 1\end{array} \right.\)

Vậy số cách chia 10 suất quà này cho 10 học sinh là \(C_{10}^6.C_4^3.C_1^1\)

Để Việt và Nam có các phần thưởng giống nhau có các TH sau:

TH1: Việt và Nam nhận suất quà nhóm (1) có \(C_8^4.C_4^3.C_1^1\)

TH2: Việt và Nam nhận suất quà nhóm (2) có \(C_8^6.C_2^1.C_1^1\)

Tổng số cách để Việt và Nam có suất quà giống nhau là: \(C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1\)

Vậy xác suất cần tìm là: \(P = \frac{{C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1}}{{C_{10}^6.C_4^3.C_1^1}} = \frac{2}{5}\)

Lời giải

Gọi số radio kiểu một và kiểu hai mà công ty này sản xuất trong một ngày lần lượt là x, y (x, y N*,chiếc)

Số tiền lãi công ty thu được trong 1 ngày:

f(x, y) = 250x + 180y (nghìn đồng)

Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày

\( \Rightarrow \left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\end{array} \right.\)

Để sản xuất 1 chiếc radio kiểu một cần 12 linh kiện điện tử A và một chiếc radio kiểu hai cần 9 linh kiện này. Số linh kiện này được cung cấp mỗi ngày không quá 900

12x + 9y ≤ 900

Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\)

Miền của hệ BPT là phần mặt phẳng đậm nhất trong hình, kể cả biên

Khi đó f(x, y) đạt GTLN khi (x, y) là một trong số các điểm A(45; 0); B(45; 40); C(15; 80); D(0; 80).

Thay vào hàm f(x, y) ta có f(x, y) đạt GTLN bằng 18 450 000 đồng khi (x, y) = (45, 40).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP