Câu hỏi:

12/07/2024 1,079 Lưu

Có 5 tem thư khác nhau và 6 bì thư khác nhau. Từ đó người ta muốn chọn ra 3 tem thư, 3 bì thư và dán 3 tem thư ấy lên 3 bì đã chọn. Hỏi có bao nhiêu cách làm như thế?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách chọn 3 tem thư trong 5 tem thư khác nhau là: \(C_5^3\) cách.

Số cách chọn 3 bì thư trong 6 bì thư khác nhau là: \(C_6^3\) cách.

Số cách dán tem thư thứ nhất vào 3 bì thư là: \(C_3^1\) cách.

Số cách dán tem thư thứ hai vào 2 bì thư còn lại là: \(C_2^1\) cách.

Số cách dán tem thư thứ hai vào bì thư cuối cùng là: \(C_1^1\) cách.

Vậy có \(\left( {C_5^3.C_6^3} \right).\left( {C_3^1.C_2^1.C_1^1} \right) = 1200\) cách làm thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với 3 loại quà khác loại ta chia được thành 3 nhóm tương ứng như sau:

Nhóm (1) gồm 1 áo và 1 sữa 

Nhóm (2) gồm 1 sữa và 1 cặp

Nhóm (3) gồm 1 cặp và 1 áo

Gọi x,y,z lần lượt là số học sinh nhận các suất quà thuộc nhóm (1); (2); (3) 

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z = 10\\x + z = 7\\x + y = 9\\y + z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 3\\z = 1\end{array} \right.\)

Vậy số cách chia 10 suất quà này cho 10 học sinh là \(C_{10}^6.C_4^3.C_1^1\)

Để Việt và Nam có các phần thưởng giống nhau có các TH sau:

TH1: Việt và Nam nhận suất quà nhóm (1) có \(C_8^4.C_4^3.C_1^1\)

TH2: Việt và Nam nhận suất quà nhóm (2) có \(C_8^6.C_2^1.C_1^1\)

Tổng số cách để Việt và Nam có suất quà giống nhau là: \(C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1\)

Vậy xác suất cần tìm là: \(P = \frac{{C_8^4.C_4^3.C_1^1 + C_8^6.C_2^1.C_1^1}}{{C_{10}^6.C_4^3.C_1^1}} = \frac{2}{5}\)

Lời giải

Gọi số radio kiểu một và kiểu hai mà công ty này sản xuất trong một ngày lần lượt là x, y (x, y N*,chiếc)

Số tiền lãi công ty thu được trong 1 ngày:

f(x, y) = 250x + 180y (nghìn đồng)

Công suất của dây chuyền 1 là 45 radio/ngày và dây chuyền 2 là 80 radio/ngày

\( \Rightarrow \left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\end{array} \right.\)

Để sản xuất 1 chiếc radio kiểu một cần 12 linh kiện điện tử A và một chiếc radio kiểu hai cần 9 linh kiện này. Số linh kiện này được cung cấp mỗi ngày không quá 900

12x + 9y ≤ 900

Ta có hệ bất phương trình: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\)

Miền của hệ BPT là phần mặt phẳng đậm nhất trong hình, kể cả biên

Khi đó f(x, y) đạt GTLN khi (x, y) là một trong số các điểm A(45; 0); B(45; 40); C(15; 80); D(0; 80).

Thay vào hàm f(x, y) ta có f(x, y) đạt GTLN bằng 18 450 000 đồng khi (x, y) = (45, 40).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP