Câu hỏi:
12/07/2024 3,382Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
+) Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (SAB) cắt mặt phẳng (P) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).
+) Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (SAD) cắt mặt phẳng (P) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).
+) Trong mặt phẳng (SCD), qua G vẽ đường thẳng song song với CD cắt SC tại H.
Ta có: GH // CD và CD // AB nên GH // AB, do đó GH nằm trong mặt phẳng (P).
Vì G thuộc SD nên G thuộc mặt phẳng (SCD) và H thuộc SC nên H thuộc mặt phẳng (SCD), do đó GH nằm trong mặt phẳng (SCD).
Vậy GH là giao tuyến của (P) và (SCD).
+) Nối H với F, ta có H thuộc SC nên H thuộc mặt phẳng (SBC). Vì F thuộc SB nên F thuộc mặt phẳng (SBC). Do đó, HF nằm trong mặt phẳng (SBC).
Lại có H và F đều thuộc (P) nên HF nằm trong mặt phẳng (P).
Vậy HF là giao tuyến của (P) và (SBC).
+) Ta có: EF // AB và GH // AB nên EF // GH, do vậy tứ giác EFHG là hình thang.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian, cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng?
a) Nếu a và (P) có điểm chung thì a không song song với (P).
b) Nếu a và (P) có điểm chung thì a và (P) cắt nhau.
c) Nếu a song song với b và b nằm trong (P) thì a song song với (P).
d) Nếu a và b song song với (P) thì a song song với b.
Câu 2:
Cho hai tam giác ABC và ABD không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trung điểm của các cạnh AC, AD.
a) Đường thẳng AM có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
b) Đường thẳng MN có song song với mặt phẳng (BCD) hay không? Hãy giải thích tại sao.
Câu 3:
Câu 4:
Câu 5:
Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng b nằm trong (P). Gọi (Q) là mặt phẳng chứa a và b (H.4.36).
Nếu a và (P) cắt nhau tại điểm M thì M có thuộc (Q) và M có thuộc b hay không? Hãy rút ra kết luận sau khi trả lời các câu hỏi trên.
Câu 6:
về câu hỏi!