Câu hỏi:

12/07/2024 5,993 Lưu

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là các điểm thuộc cạnh SA, SB, SC, SD sao cho \[\frac{{MA}}{{MS}} = \frac{{NB}}{{NS}} = \frac{{PC}}{{PS}} = \frac{{QD}}{{QS}} = \frac{1}{2}\]. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Xét tam giác SAB có \(\frac{{MA}}{{MS}} = \frac{{NB}}{{NS}} = \frac{1}{2}\) hay \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3}\), suy ra MN // AB (theo định lí Thalés). Do đó MN song song với mặt phẳng (ABCD). Tương tự, NP // BC nên NP song song với mặt phẳng (ABCD). Vậy mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABCD) nên mặt phẳng (MNP) song song với mặt phẳng (ABCD). Lập lập tương tự ta có mặt phẳng (MPQ) cũng song song với mặt phẳng (ABCD).

Hai mặt phẳng (MNP) và (MPQ) cùng đi qua điểm M và cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng đó trùng nhau, tức là bốn điểm M, N, P, Q đồng phẳng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.

Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).

Tương tự, ta chứng minh được NP // BC, suy ra NP song song với mặt phẳng (ABC).

Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.

Lời giải

Lời giải:

Media VietJack

a) Gọi M và N lần lượt là trung điểm của BC và B'C'. Khi đó ta có MN là đường trung bình của hình bình hành BCC'B', suy ra MN // BB' và MN = BB'.

Do ABC.A'B'C' là hình lăng trụ tam giác nên AA' // BB' và AA' = BB'.

Từ đó suy ra MN // AA' và MN = AA'. Do đó, AMNA' là hình bình hành.

Suy ra AM // A'N và AM = A'N.

Vì G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C' nên \(\frac{{A'G'}}{{A'N}} = \frac{{AG}}{{AM}} = \frac{2}{3}\).

Do đó, AG = A'G' và AG // A'G'. Từ đó suy ra tứ giác AGG'A' là hình bình hành.

b) Vì tứ giác AGG'A' là hình bình hành nên AA' // GG'.

Tương tự ta chứng minh được CGG'C' là hình bình hành nên CC' // GG'.

Do đó, ba đường thẳng AA', GG' và CC' đôi một song song.

Lại có hai mặt phẳng (AGC) và (A'G'C') song song với nhau.

Vậy AGC.A'G'C' là hình lăng trụ tam giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP