Câu hỏi:
12/07/2024 885Trong hai bức tranh ở Hình 1.41, các hình chữ nhật ABCD, A'B'C'D' có các cạnh tương ứng song song, bức tranh lớn có kích thước gấp đôi bức tranh nhỏ.
a) Giải thích vì sao các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Hãy tính các tỉ số \(\frac{{OA}}{{OA'}},\,\frac{{OB}}{{OB'}},\,\frac{{OC}}{{OC'}},\,\frac{{OD}}{{OD'}}\).
c) Dùng thước thẳng nối hai điểm tương ứng nào đó trên hai bức tranh (chẳng hạn, đầu mỏ trên của chú gà ở hai bức tranh). Đường thẳng đó có đi qua O hay không?
Câu hỏi trong đề: Chuyên đề Toán 11 KNTT Bài 6. Phép vị tự có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Gọi O là giao điểm của AA' và BB'.
Xét tam giác OA'B' có AB // A'B', theo định lý Thales, ta có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\).
Từ đó suy ra A, B lần lượt là trung điểm của OA' và OB'.
Gọi C" là giao điểm của BC và OC'. Vì BC // B'C' nên BC" // B'C'.
Xét tam giác OB'C' có BC" // B'C' và B là trung điểm của OB' nên BC" là đường trung bình của tam giác OB'C'. Suy ra BC" = \(\frac{1}{2}\)B'C' và C" là trung điểm của OC'.
Mặt khác theo giả thiết ta có BC = \(\frac{1}{2}\)B'C'. Do vậy C" trùng với C và C là trung điểm của OC'.
Chứng minh tương tự, ta được D là trung điểm của OD'.
Vậy các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Vì A, B, C, D lần lượt là trung điểm của OA', OB', OC', OD' nên
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\).
c) Dùng thước thẳng nối hai điểm tương ứng trên hai bức tranh, cụ thể, đầu mỏ trên của chú gà ở hai bức tranh, ta thấy đường thẳng này đi qua điểm O.Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có (C): (x – 1)2 + (y – 2)2 = 25 hay (x – 1)2 + (y – 2)2 = 52.
Do đó, đường tròn (C) có tâm I(1; 2) và bán kính R = 5.
b) Đường tròn (C') là ảnh của đường tròn (C) qua phép vị tự tâm A(3; 5), tỉ số 2 nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép vị tự V(A, 2) và bán kính R' của đường tròn (C') bằng 2 lần bán kính R của đường tròn (C) hay R' = 2 . 5 = 10.
Ta có: \(\overrightarrow {AI} = \left( {1 - 3;\,2 - 5} \right) = \left( { - 2;\, - 3} \right)\).
Vì I' là ảnh của I qua phép vị tự V(A, 2) nên \(\overrightarrow {AI'} = 2\overrightarrow {AI} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - {x_A} = 2.\left( { - 2} \right)\\{y_{I'}} - {y_A} = 2.\left( { - 3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - 3 = - 4\\{y_{I'}} - 5 = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} = - 1\\{y_{I'}} = - 1\end{array} \right.\).
Vậy I'(– 1; – 1) và R' = 10.
c) Phương trình đường tròn (C') là (x + 1)2 + (y + 1)2 = 102 hay (x + 1)2 + (y + 1)2 = 100.Lời giải
Lời giải:
Gọi I là trung điểm của AB, ta có I(2; 4) là tâm của đường tròn đường kính AB với bán kính là R = IA = \(\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 4} \right)}^2}} = \sqrt 5 \).
Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C).
Vì đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự V(O, 3) nên I' là ảnh của I qua phép vị tự V(O, 3) và R' = 3R = \(3\sqrt 5 \).
Khi đó ta có: \[\overrightarrow {OI'} = 3\overrightarrow {OI} \]. Từ đó suy ra I'(6; 12).
Phương trình đường tròn (C) là (x – 6)2 + (y – 12)2 = \({\left( {3\sqrt 5 } \right)^2}\)hay (x – 6)2 + (y – 12)2 = 45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận