Câu hỏi:

11/07/2023 994

Chứng minh rằng, phép vị tự V(O, 1) là phép đồng nhất, phép vị tự V(o, – 1) là phép đối xứng tâm O.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

+ Phép vị tự V(O, 1) biến điểm M thành điểm M' thỏa mãn \(\overrightarrow {OM'} = \overrightarrow {OM} \). Khi đó M' trùng với M. Do đó, phép vị tự V(O, 1) là phép đồng nhất.

+ Phép vị tự V(O, – 1) biến điểm M thành điểm M" thỏa mãn . Khi đó O là trung điểm của MM". Do đó, M" là ảnh của M qua phép đối xứng tâm O hay phép vị tự V(O, – 1) là phép đối xứng tâm O.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có (C): (x – 1)2 + (y – 2)2 = 25 hay (x – 1)2 + (y – 2)2 = 52.

Do đó, đường tròn (C) có tâm I(1; 2) và bán kính R = 5.

b) Đường tròn (C') là ảnh của đường tròn (C) qua phép vị tự tâm A(3; 5), tỉ số 2 nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép vị tự V(A, 2) và bán kính R' của đường tròn (C') bằng 2 lần bán kính R của đường tròn (C) hay R' = 2 . 5 = 10.

Ta có: \(\overrightarrow {AI} = \left( {1 - 3;\,2 - 5} \right) = \left( { - 2;\, - 3} \right)\).

Vì I' là ảnh của I qua phép vị tự V(A, 2) nên \(\overrightarrow {AI'} = 2\overrightarrow {AI} \)

 \( \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - {x_A} = 2.\left( { - 2} \right)\\{y_{I'}} - {y_A} = 2.\left( { - 3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - 3 = - 4\\{y_{I'}} - 5 = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} = - 1\\{y_{I'}} = - 1\end{array} \right.\).

Vậy I'(– 1; – 1) và R' = 10.

c) Phương trình đường tròn (C') là (x + 1)2 + (y + 1)2 = 102 hay (x + 1)2 + (y + 1)2 = 100.

Lời giải

Lời giải:

Gọi I là trung điểm của AB, ta có I(2; 4) là tâm của đường tròn đường kính AB với bán kính là R = IA = \(\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 4} \right)}^2}} = \sqrt 5 \).

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C).

Vì đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự V(O, 3) nên I' là ảnh của I qua phép vị tự V(O, 3) và R' = 3R = \(3\sqrt 5 \).

Khi đó ta có: \[\overrightarrow {OI'} = 3\overrightarrow {OI} \]. Từ đó suy ra I'(6; 12).

Phương trình đường tròn (C) là (x – 6)2 + (y – 12)2 = \({\left( {3\sqrt 5 } \right)^2}\)hay (x – 6)2 + (y – 12)2 = 45.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay